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ABSTRACT. We introduce for each quiver (Q and each algebraic oriented cohomology theory A, the
cohomological Hall algebra (CoHA) of ), as the A-homology of the moduli of representations of the
preprojective algebra of (). This generalizes the K-theoretic Hall algebra of commuting varieties
defined by Schiffmann-Vasserot [SV13]. When A is the Morava K-theory, we show evidence that
this algebra is a candidate for Lusztig’s reformulated conjecture on modular representations of
algebraic groups [Lusl5].

We construct an action of the preprojective CoHA on the A-homology of Nakajima quiver vari-
eties. We compare this with the action of the Borel subalgebra of Yangian when A is the intersection
theory. We also give a shuffle algebra description of this CoHA in terms of the underlying formal
group law of A. As applications, we obtain a shuffle description of the Yangian.
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0. INTRODUCTION

Let @ be a quiver, and gg the corresponding symmetric Kac-Moody Lie algebra. The Nakajima
quiver varieties of () are fine moduli spaces parametrizing stable framed representations of the
preprojective algebra of @ [Nak94]. They play an important role in constructing representations of
various quantum groups associated to gq.

When @ is a quiver without edge loops, Nakajima constructed an action of the quantum loop
algebra U,(Lgg) on the equivariant K-theory of quiver varieties [Nak(1]. He realized the Drinfeld
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generators of U,(Lgg) as explicit convolution operators, and showed that they satisfy the required
commutation relations. Following a similar method, Varagnolo constructed an action of the Yangian
Y5 (gg) on the equivariant Borel-Moore homology of quiver varieties | |. Based on the pattern,
the elliptic quantum group should act on the equivariant elliptic cohomology of quiver varieties,
which will be carried out in | ] based on the techniques developed in the present paper.

The main goal of the present paper is to show that for any quiver ) and an arbitrary algebraic
oriented cohomology theory A in the sense of Levine-Morel [ |, there is an affine quantum
group associated to go and A, which acts on the A-homology of quiver varieties.

There had been quite a few evidence that such an affine quantum group should exist, notably:

(1) As observed by Drinfeld, the dual of any quantum group in the sense of | , § 7] is
a quantized formal series bialgebra. Hence associate to each quantum group there is a
Lie algebra and a formal group law. However, there had been no construction the other
direction, although for the formal group laws coming from 1-dimensional algebraic groups
the corresponding affine quantum groups were known.

(2) As observed in [ |, there is a parallelism among three different mathematical objects:
affine quantum groups, oriented cohomology theories, and formal group laws. The corre-
spondence between the last two is well-known, and Nakajima’s construction is an evidence
of a direct link between the first two.

Yangian and quantum loop algebra have known Drinfeld-type presentations. In | , 1,
Nakajima and Varagnolo constructed operators by which the generators of Yangian and quantum
loop algebra act on quiver varieties, and verified their relations. Consequently, the representations
of these algebras are constructed geometrically. However, the affine quantum groups associated to
other oriented cohomology theories do not have known presentations, hence counterparts of the
operators used in loc. cit. have no prescribed commutation relations, i.e., the method in loc. cit.
does not provide a construction of these algebras themselves.

The present paper gives the first construction, geometrically or algebraically, of quantum groups
in the affine setting beyond the Yangians, quantum loop algebras, and elliptic quantum groups.
These new affine quantum groups have equality interesting properties, some of which are not
available to the previously known cases:

(1) Examples when A is the connective K-theory, the Eilenberg-MacLane spectrum HZ/p, or
the algebraic cobordism can be found in § 6.

(2) In particular, Lusztig proposed the existence of a family of quantum groups depending on
a prime number p and an integer n, with conjectural properties | |. When A is the
Morava K-theory, we get such a family with evidence of satisfying the desired properties,
including a stability property prescribed by Lusztig (Proposition 6.4). A complete proof in
the case when n = 0 follows from the present paper.

We construct an algebra, called the preprojective cohomological Hall algebra (CoHA), as well
as an action of it on the A-homology of Nakajima quiver varieties associated to @, following
an approach similar to | ]. The Nakajima-type raising operators are lifted as elements in this
CoHA. We also construct a suitable extension of the preprojective CoHA, which roughly speaking is
a quantization of a central extension of U(bg[u]), where the quantization depends on the underlying
formal group law of A. We study in detail the test case when the formal group law is additive, and
we show in this case the quantization is the Borel subalgebra of the Yangian Y;(gq).

To describe the multiplication of the preprojective CoHA algebraically, we also give a shuffle
formula. Historically, a shuffle description was not only used as an intrinsic way of defining quantum
groups [ |, but also provided interesting combinatorial information. For example, PBW property
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of quantum groups becomes transparent through the shuffle algebra (see, e.g., [R89]), and the dual
canonical basis has a purely algebraic description in terms of it [ |. In this paper, we give
a geometric description of the shuffle algebra. The commutation relations among Nakajima-type
raising operators can be calculated using the shuffle formula.

The construction in the present paper follows similar idea as | ]. When Q is the Jordan
quiver, the Nakajima quiver variety is isomorphic to Hilb™(A?), the Hilbert scheme of n points
on A?. Schiffmann-Vasserot constructed an action of the elliptic Hall algebra on the equivariant
K-theory of [],, oy Hilb™(A?) [ ]. Feigin-Tsymbaliuk independently constructed an action of
the Feigin-Odesskii shuffle algebra on the equivariant K-theory of ][,y Hilb"(A?) [ . A
homomorphism from the elliptic Hall algebra to the shuffle algebra is further given in | I,
which is compatible with their actions.

The machinery in the present paper, applied to the special case when A is the Chow group, and @)
a quiver without edge-loops, gives a new construction of the Yangian, in terms of cohomological Hall
algebra. This is an affine analogue of the classical theorem that the (extended) Ringel-Hall algebra
of @ is isomorphic to U,(bg) | ]. Although this special case might be expected by analogy
with | |, no precise statement or proof had been given (see the remarks after Theorem D for the
technicality in the proof). Note that as a corollary, our construction applied to Morava K-theory
does satisfy Lusztig’s character formula for n = 0. Another application is a shuffle description of
the Yangian, which was not known previously, although a similar description for the quantum loop

algebra U, (Lgq) has been known in various special cases (see | | for the case when g is of finite
type which is not Ga, | ] when g = gly, and [ | when g is sl,,).

Last but not least, through the present paper we set up the framework of studying affine quan-
tum groups using cohomological Hall algebras, further applications of which are given in future
publications, summarized in § 0.5 and § 0.6.

0.1. The preprojective CoHA. Let Q = (I, H) be a quiver, with set of vertices I and arrows
H. Let Rep(Q,v) be the affine variety parametrizing representations of ) with dimension vector
v = (v);er € N, The vector space Rep(Q,v) carries a natural action of G, = [[;c; GL,i. Let
Wy : T*Rep(Q,v) — gl be the moment map of the cotangent bundle of Rep(Q,v). The torus
T = G2 acts on T*Rep(Q,v) with the first Gy -factor scaling Rep(Q,v) and the second one
scaling the fibers of T* Rep(Q,v) (see Assumption 3.1 for the conditions on this action). We set

PQ) = P PQ) = D Arxa, (1,(0)).
veN! veN!
We will use the abbreviations P and P, if both A and @ are understood from the context. In § 4,
we define maps
mh oy, Poy @ Puy — Py,

Theorem A (Theorem 4.1). The N/-graded abelian group P, endowed with mflm, is an associa-
tive, N/-graded algebra over Ap(pt).

This algebra will be called the preprojective cohomological Hall algebra (preprojective CoHA).
The name is motivated by the fact that the subvariety u;'(0) C T* Rep(Q,v) parameterizes the
representations of the preprojective algebra of ). Recall that the latter is the quotient of the path
algebra of the doubled quiver Q by the relations Y weml®, o] =0, where for any arrow z in @ the
opposite arrow in @ is denoted by z*.

Our construction of the algebra P has two sources. One of them is the construction of a K-
theoretic Hall algebra of commuting varieties defined by Schiffmann-Vasserot in | |, the idea
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of which can be traced back to Grojnowski [ ]. Our construction for an arbitrary quiver
and OCT essentially follows from the same techniques. Another source is the construction of
Kontsevich-Soibelman of a Hall multiplication on the critical cohomology (cohomology valued in a
vanishing cycle) of representation spaces of a quiver with potential, which arises from the study of
Donaldson-Thomas invariants (DT for short) | ]. Our preprojective CoHA can be considered
as CoHA for the 2-Calabi-Yau category of representations of the preprojective algebra.

0.2. Action on quiver varieties. Let (v, w) be the Nakajima quiver variety with dimension
vectors v,w € N! and stability condition #F (see § 5.1). We construct a representation of the
algebra AP(Q) on the A-homology of the Nakajima quiver varieties

AM(w) = @ AG,xT(M(v, w)).

veENT

Theorem B (Theorem 5.4). For any w € N/, there is a homomorphism of N/-graded Ar(pt)-
algebras
aP*P" : 4P — End (A M(w)) .

For each k € I, let e be the dimension vector valued 1 at vertex k and zero otherwise. We
define the spherical preprojective CoHA to be the subalgebra APﬁ(Q) - AP(Q) generated by
Pe,, = Arxa., (1z,1(0)) as k varies in 1.

The map aP™P" when restricted to the spherical subalgebra P*?, factors through the action of the
convolution algebra of the Steinberg variety Z = M(w) X (w) M(w) on AM(w). In Ag,xc,, (%)
there are Nakajima-type operators, which are cohomology classes on Hecke correspondences. In
Theorem 5.6, we write down explicit elements in P* which map to the Nakajima-type operators un-
der aP™P'. Hence, for a general quiver, P is a bigger symmetry on M (w) than that of | , ]
We expect the representations in Theorem B to produce highest weight integrable representations
of the Drinfeld double of P*.

0.3. The shuffle description. Assume the coefficient ring of A is a Q-algebra. Let ASH be the
shuffle algebra associated to @ and the formal group law of A (see § 3). It is a modified version
of the Feigin-Odesskii shuffle algebra | ) |. In § 3, we give the definition and a geometric
interpretation of ASH, and hence prove the following.

Theorem C (Theorem 4.3). Assume the coefficient ring of A is a Q-algebra. There is an algebra
homomorphism © : 4P — AS8H, which becomes an isomorphism after a suitable localization spelled
out in Remark 4.4.

The homomorphism © gives an explicit description of the Hall multiplication of P using the
shuffle formulas. In § 5.4, we construct a commutative algebra 4P°, which acts on 4P. We define
the extended spherical CoHA to be P%¢ := P* x PY which, when @ has no edge-loops, is a
quantization of central-extended U(bg[u]) associated to the formal group law of A.

In | |, we define a comultiplication on P*¢, making it a bialgebra. We also construct a
bialgebra pairing, under which the Drinfeld double of P%*¢ is a quantization of central-extended
U(gg[u]) again when @ has no edge-loops.

0.4. The Yangians Y};(gg). We compare the preprojective CoHA with known quantum groups.

In order to do so, we need to twist the multiplication of P by a sign. More precisely, let P

be the twisted preprojective CoHA, whose underlying abelian group is the same as P, and the
P P

v 1 o DY @ sign coming from the Euler-Ringel form, spelled

multiplication m on P differs from m

out in § 5.6. Similar to the untwisted case, we have the spherical subalgebra P C P. Define P*
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to be the quotient of ﬁ5]t1:t2:h /2 by the torsion part, the precise sense of which is spelled out in
Remark 4.4. Let P~ be P° x PO.

Now let A be the intersection theory CH (that is, the Chow group, see [ ]). For any w € N/,
let M(w) = @,cnt CHa,xr(M(v,w)). Following Nakajima [ |, Varagnolo constructed an
action of the Yangian Y;(gg) on M(w) | . !

Theorem D (Theorems 7.1, 8.3). Let @ be a quiver without edge loops. Let YEZO(gQ) be the
Borel subalgebra of Y;(gg) (see § 8 for a precise definition).

(1) There is a surjective algebra homomorphism I : Yhzo(gQ) _y CHP™

(2) When Q is of type ADE, we have an isomorphism T : YEZO(gQ) = CHE“, and the following
diagram is commutative

CHﬁs,e YﬁZO(QQ) ~ CHﬁs’e

| r
End(M(w)),
where the map Y;(gg) — End(M(w)) is defined in | ]

Remark 0.1. (1) For each k € I, we have “HP, = C[z(*)]. By Theorems 5.6, the action of
() on M(w) is given by (c1(Ly))!, where £y is certain tautological line bundle on the
Hecke correspondence in quiver varieties. This is the same as the action of the standard
generators x:;l of Y;"(gg) from | ] when @ has no edge loops.
(2) When @ has no edge loops, we expect that it can be deduced from the recent work of | ]
that the action of “MP on M (w) is faithful after passing to Q(/). Therefore, one has an
isomorphism Yh20 (g9g) = CHPDs:¢ after localization.

A Hall algebra description of the positive part of the affine quantum group is a special case of
Lusztig’s construction of the composition subalgebra [ ]. However, a Hall algebra description
of the Yangian was not known.

Combining Theorem D with Theorem C shows that the positive part of the Yangian Y;(QQ)
embeds into the shuffle algebra SH. This can be considered as an affine analogue of [R98], that
U;’ (gg) is a subalgebra of the quantum shuffle algebra. Although the shuffle description for the
quantum loop algebra U, (Lg) has been known in various special cases (see [ | for the case when

g is of finite type which is not Go, and | ] for the case when g = g[;), the proof of Theorem D
uses an entirely different method.

The proof here pins down the quadratic relation of Nakajima operators as that in the Yangian,
which was previously unclear outside of simply-laced case (see | , § 4, Remark]); this is also
the first proof of the Serre relation in the Yangian outside of simply-laced case, which we establish
using a symmetric polynomial identity proved in Appendix A, which might be interesting on its
own right.

The shuffle description of UqJr (g) for an affine Lie algebra g, was used to provide a combinatorial
characterization of the dual canonical basis, and hence the shuffle formula became a basic calculation
tool in g-characters of the KLR algebra | , ]. By analogy, we expect the shuffle description

n [ ] the Borel-Moore homology was used instead of the intersection theory. However, note that in the
verification of Yangian action, one only uses the fact that the formal group law of this cohomology theory is the
additive group law. As we would like to stay in the algebraic setting in the present paper, we use the Chow group
instead of Borel-Morel homology. This modification is not essential.
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of the Yangian to lead to an analogue of the dual canonical basis in the Yangian. Furthermore,
according to the recent progresses [ , |, it is expected that the trace of the graded
representation category of KLR algebra is isomorphic to the Yangian. Thus, the shuffle description
of Yangian should provide a calculation tool in the study of trace decategorification of KLR algebra.

0.5. K-theory and elliptic cohomology. The study of various quantum groups and their rep-
resentations in the affine setting has been a fruitful subject. The present paper contributes more
members to the family of quantum groups in the affine setting.

When A is the K-theory, it is expected in | | that, there is an algebra isomorphism
Uf(Lgq) — KPs(Q). However, the relation between the XP%(Q) action on equivariant K-theory
of quiver varieties and the action of Uy(Lgg) studied in [ | is not clear. As the study of this
relation would involve a different set of generators of U;’ (Lgg) than the one used in | ], we
do not achieve this in the current paper.

Assuming A(pt) is a Q-algebra, the formal group law associated to A is isomorphic to the
additive one, in the sense of | , Ch. IV]. However, an isomorphism between two formal group
laws does not give an isomorphism between the corresponding CoHA’s. Instead, it yields that the
multiplications of the two CoHA’s are related by a factor, a precise statement of which can be found
in | , Remark 1.4]. In other words, the algebra 4P (Q) depends on the formal group law itself,
instead of the isomorphism class of the formal group law. Nevertheless, motivated by [ I,
it is possible that the extended spherical subalgebra 4P(Q)%¢ is isomorphic to a completion of
CH'P(Q)E’Q.

In | |, we study the preprojective CoHA when A is the equivariant elliptic cohomology of
[ , |. We construct a sheafified elliptic quantum group, whose rational sections form
the operators studied in [ |, which in turn is the elliptic quantum group defined by Felder
and his collaborators (see e.g., | ).

Parallel to this paper, it is proved in [ ] that the formal affine Hecke algebra studied in
[ | acts on the A-homology of the Springer fibers. We expect that in type-A the formal
affine Hecke algebra in [ | and P studied in the current paper are related by a Schur-Weyl
duality. In | ], it is proved that the elliptic affine Hecke algebra acts on the equivariant elliptic
cohomology of the Springer fibers.

0.6. Preprojective CoHA and critical CoHA. Associated to the category of representations of
a quiver with potential, there is a critical CoHA defined by Kontsevich-Soibelman, in the framework
of Donaldson-Thomas theory. For the class of quivers with potential studied by Ginzburg in | I,
we construct an isomorphism of the corresponding preprojective CoHA and the critical CoHA in
[ |. In loc. cit. we use Theorem D to show the existence of an algebra homomorphism
Yﬁ+(gQ) — H)y —t,=h/2, Where S is a version of the critical CoHA of | |, twist by a sign
coming from the FEuler-Ringel form.

After an earlier version of this paper appeared on arXiv, in the course of studying the semi-
canonical bases and an analogue of the Kac polynomial, a similar notion of CoHA for preprojective
algebra was introduced in [ |, although the results in the present paper were not included in
loc. cit. except for Theorem A in the case when A is the Borel-Moore homology.

Shortly after an earlier version of the current paper, which contains Theorems D for the Dynkin
case and [ , Theorem A], appeared on arXiv, a conjecture about a relation between Yangian
and critical CoHA for more general cases was independently proposed by Davison | ].
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Summary. For the convenience of the readers, we summarize the various algebras as follows.

Cprs,e

cnp CHL;ae\ End M)
| T

SH C SH —=SH, 1 <Y

Here the multiplications of the Hall algebras and shuffle algebras are understood as twisted by a
sign specified in § 5.6.

1. ALGEBRAIC ORIENTED COHOMOLOGY THEORY

In this section we collect basic notions about equivariant oriented Borel-Moore homology theory.

1.1. Equivariant oriented cohomology theories. Fix a base field k. For any reductive algebraic
group G, let Scth be the category of schemes over k of finite type with a G-action. We will
consider equivariant Borel-Moore homology theory in the sense of | , § 2] and | , § 5.1].
In particular, it is the following data:

(1) For any object X in Sch{, Ag(X) is a module over the commutative ring Ag(pt).
(2) (Proper pushforward) For f : Y — X a proper morphism in Sch¥, there is a homomorphism
f* : Ag(Y) — A(;(X).
(3) (Smooth pullback) For a smooth morphism f : Y — X in Sch{, there is a homomorphism
[T Ac(X) = Ag(Y).
(4) (Refined Gysin pullback) For any local complete intersection morphism f : Y — X, and
an arbitrary morphism Z — X, let g : Z xx Y — Z be the base change. Then, there is a
refined pullback map fg cAq(Z) = Ag(Z xx Y). We will also write f* if g is understood
from the context. It specializes to the smooth pullback f* when f is smooth and Z — X
is the identity morphism on X.
(5) (1st Chern class operators) For each line bundle L — X, X € Sch{, there is a graded
homomorphism ¢;(L) : Ag(X) = Ag(X).
These all satisfy a number of compatibilities, detailed in | , §2.1, § 2.2]. When restricting A
to the category of smooth G-varieties, it factors through the category of commutative rings with
unit. As we will need the compatibility of push-forward and the refined Gysin pull-backs, we collect
some basic facts in § 1.2.
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When G is trivial, Ag is an oriented Borel-Moore homology theory in the sense of | |. Hence,
there is a formal group law (R, F') associated to it, where R = A(pt) and F(u,v) € R]u,v]. We
use the short-hand notations u +p v := F(u,v). Denote —pv to be the inverse of v of the formal
group law, in other words, F'(v, —pv) = 0.

Equivariant OCT’s of primary interests to us are in the following example.

Example 1.1. (1) In | ] it has been explained how any non-equivariant Borel-Moore ho-
mology theory A extends to an equivariant theory, following an idea due to Totaro in
[T99]. More precisely, for any reductive group G, the classifying space of G is a system
EG := {EGpN}nNen, where each EGy is a Zariski open subset in a representation of G
on which G-acts freely, and satisfies the condition of a good system spelled out in [ ,
Definition 10]. For simplicity, we call BG := {EGN/G}nen the classifying space of G, and
we define Ag(X) to be limy A(X xg EGN).

(2) Note that in the construction of | |, there is no stabilization in each homological degree
in the system {A(X xg EGn)}n for a general A. However, it is proved in [199], that
when A is CH, for each fixed homological degree i the system {CH'(X xg EGy)}n does
stabilize. See also | |. Therefore, in this case, we will take CHg(X) to be the direct sum
@, limy CH (X xg EGy). In particular, for us CHg,, (pt) = Q[2] while limy CH(pt xg,,
(E Gm)x) = QI

(3) More generally, for any 1-dimensional algebraic group G over a commutative Q-algebra R,
together with a local uniformizer [, the expansion of the group structure of G under [ gives
rise to a formal group law. There is an OCT A associated to this data constructed in | ,
§ 4.1]. For A of this type, and for any compact Lie group G, Lurie | , Theorem 3.2]
constructed an equivariant OCT A¢ for G-finite CW-complexes. In particular, Ag(pt) is
the coordinate ring of G**%& /¥, where W is the Weyl group of G. We expect similar
equivariant OCT exists in the algebraic setting, i.e., for a reductive group G acting on an
algebraic variety X. This is known to be true when G is the additive group (see (2) above)
and the multiplicative group (see (4) below).

(4) When A is the K-theory with Q-coefficients, we will use the equivariant K-theory of [193].
Hence, Kg,, (pt) = Q[z%].

Let V' — X be a vector bundle of X with Chern roots A\1,..., \,. It is known that the cohomology
of Grassmannian is generated by the Chern classes of the tautological vector bundle. In other
words, let vy, -+ , v, be the Chern roots of the rank-r tautological bundle R(r) on Grass(r, V). For
any pair (p,q) of positive integers, let Sh(p,q) be the subset of &, consisting of (p, q)-shuffles
(permutations of {1,--- ,n} that preserve the relative order of {1,--- ,p} and {p+1,--- ,p+ q}).

Proposition 1.2. Let V. — X be a rank n vector bundle and let p : Grass(r,V) — X be the

associated Grassmannian bundle. For any the oriented cohomology theory A with formal group law
(R, F) where Q C R, let f(vi,...,v,) € A(Grass(r,V)). Then,

Ay ooy Ap
P )= o ) o
{oeSh(rn—r)} HlSer,ngign( i —F Aj)

where \1 ...\, are Chern roots of V in A.

Let I be a finite set and v = (v%);e; € N’ be a vector with entries non-negative integers. Let G, be
[Lic; GL,i, and let T' be the maximal torus of G,. The Weyl group &, := [[,c; &, acts on Ar(pt)

by permutation. When Ag is as in Example 1.1(2), Ag(pt) is the coordinate ring of (J],.; G")/S,.
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When Ag is as in Example 1.1(1), Ag(pt) = A(pt) [[/\z-]]Gv .. For any dimension vector v € N

iel,j=1,...,v ) )
with v = v 4 va, we denote Sh(vi,v2) C &, to be the product ], ; Sh(v],v5).

1.2. Lagrangian correspondence formalism. Now we recall the Lagrangian correspondence
formalism following the exposition in [ ]

Let X be a smooth quasi-projective variety endowed with an action of a reductive algebraic
group G. The cotangent bundle T*X is a symplectic variety. The induced action of G on T*X
is Hamiltonian. Let p : T*X — (LieG)* be the moment map. Following [ ], we denote
p~1(0) C T*X by THX.

Let P C G be a parabolic subgroup and L C P be a Levi subgroup. Let Y be a smooth quasi-
projective variety equipped an action of L, and X’ smooth quasi-projective with a G-action. Let
VYV CY x X’ be a smooth subvariety. Let pry, pry be the two projections restricted on V

pr pr
Yy V-5 X,

Assume the first projection pry is a vector bundle, and the second projection pr, is a closed em-
bedding.
Let X := G xp Y be the twisted product. Set W := G xp V and consider the following maps

x-l w2 x

[ (g, 0)] = [(g, pri(v))], g+ [(g,0)] = gpra(v),
where [(g,v)] is the pair (¢g,v) mod P. Note that the natural map 7*X — G xp T*Y is a vector
bundle.

Lemma 1.3 ([ |, Lemma 7.1). There is an isomorphism G xp T;Y = TEX such that the
following diagram commutes

GxpTY —=T5X

| |

GxpT*'Y——T*X
where G xp T*Y < T*X is the zero-section of the vector bundle T*X — G xp T*Y .

Let Z :=Tj;,(X x X') be the conormal bundle of W in X x X'. Let Zg C T X x T X' be the
intersection Z N (TEX x TEX'). Then we have the following diagram.

GxpTiY ——=TEX <*— Zo — 2= T X

R

G xpT*YC X VA T*X'

where ¢ : Z — T*X and @ : Z — T*X' are respectively the first and second projections of
T*X x T*X' restricted to Z.

Lemma 1.4. | , Lemma 7.3] The morphism ) : Z — T*X' is proper. We have w_l(TéX’) =
Zag and o~ TLX) = Zg.

Let A be an oriented Borel-Moore homology theory. Existence of refined Gysin pull-back and
Lemma 1.4 ensure the existence of the map ¥, o ¢* : Ag(T5X) — Ac(TEX').



10 Y. YANG AND G. ZHAO

Lemma 1.5. The following diagram commutes

* E*oqﬁﬁ * /
AG(TGX) - AG(TGX )

l l

Ac(T*X) Aa(T*X")

P00
where the vertical maps are push-forwards induced by natural embeddings.

Proof. Tt follows directly from Lemma 1.6(1) below. O

1.3. Base-change for Lagrangian correspondences. We collect some basic facts about com-
patibility of push-forward and Gysin pull-back in oriented Borel-Moore homology. We will apply
these facts to the setting of Lagrangian correspondences.

Recall that two morphisms f:Y — X and ¢ : X’ — X are said to be transversal if

TorkOX(OX/, Oy) =0, for any k > 0.

Lemma 1.6 (] |, Theorem 6.6.6(2), and Lemma 6.6.2). Consider the following diagram in
Schk

HLY'—>Y

if// \Lf/ \Lf
w2 x' 21X
with all squares Cartesian. Assume f is a locally complete intersection morphism.

(1) If g is proper, then f]ﬁc,g* = g;fﬁ”_
(2) If f and q are transversal, then f}@u — f/ti//'

As a consequence, we have the following.

Lemma 1.7. Consider the following commutative diagram in which every square is Cartesian.

f// Y/

I
//\W
1 l

19
g i Y
A
Z’+X’ e
\ \X

VA
f

W/

Assume g and i are proper, f and g are transversal, and f is a locally complete intersection
morphism. Then we have the equality

Volly=giof
as homomorphisms from A(Z') to A(Y’).
Proof. By Lemma 1.6(1), we have f,ﬁ’ogg,, = gg, ofl. By Lemma 1.6(2), gg,, = lg,,. We are done. [J

The following is a sufficient condition for two morphisms to be transversal.
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Lemma 1.8 (] ], Proposition C.1). Consider the following Cartesian diagram

Y/ L X/

b

Yy —X.

Assume g is proper, the map ' x ¢ : Y' — X' x Y is a closed embedding, and assume dim(X) +
dim(Y’) = dim(X') + dim(Y"). Then, ¢' is proper, and f and g are transversal.

One example is given as below. Let W7 C X3 x X9, Wy C X3 x X1, and W3 C X5 x X1 be
subvarieties. We assume Wy = W) X x, W3. We consider the Lagrangian subvarieties

Zl = T{/kvl(Xg X XQ), Zg = T{/kVZ(Xg X Xl), Zg = T$V3(X2 X Xl).

Assume the intersection (W7 x X7)N (X3 x W3) is transversal in X3 x Xo x X7. Thus, by [ , The-
orem 2.7.26] we have an isomorphism Z; Xp=x, Z3 = Z5. In particular, the following commutative
diagram is Cartesian

7, 2% T x,

| s

Ly — Zs.

Lemma 1.9. With notations as above, we have dim(Z71) + dim(Z3) = dim(Z3) + dim(7T*X3). In
particular, ¢1 and 3 are transversal. The map Zs — Z1 is proper.

Proof. The dimension counting follows from the fact that Z1, Z5, and Z3 are all Lagrangian sub-
varieties.

In Lemma 1.8, taking Y to be Z1, Y’ to be Z5, X to be T* X5, and Z3 to be X', the properness
of Zy — Z1 follows. O

2. THE FORMAL COHOMOLOGICAL HALL ALGEBRAS

In this section, we review in the algebraic setting the cohomological Hall algebra defined by
Kontsevich and Soibelman in [ |. The idea of studying CoHA from arbitrary oriented Borel-
Moore homology theory goes back to | , § 3.7]. We spell out in an explicit fashion the shuffle
formula for this CoHA, with emphasis on the dependence on the formal group law.

2.1. The formal cohomological Hall algebras. Let k be an arbitrary field. Let Q be a quiver
with vertex set I and arrow set H. We assume in this paper that I and H are finite sets. For
h € H, we denote by in(h) (resp. out(h)) the incoming (resp. outgoing) vertex of h. For any
dimension vector v = (v');e; € N, the representation space of @ with dimension vector v is
denoted by Rep(Q,v). That is, let V = {V'};c; be an I-tuple of k-vector spaces with dimension

vector dim(V"*) = v'. Then,

Rep(Q, v) := @ Homy,(Vout), yin(),
heH

The algebraic group Gy := [[;¢; GL(v?) acts on Rep(Q,v) by conjugation. For any vy, vy € N/ such
that v := v1 +v9, let V7 C V be an I-tuple of vector subspaces of V' with dimension vector v;. The
parabolic subgroup of G, that preserves V) will be denoted by P C G,. Let L = G,, x Gy, be the
standard Levi-subgroup in P.

Let A be an oriented Borel-Moore homology theory as in § 1 and (R, F') be the formal group
law associated to A. We consider the N/-graded R-module H%(Q) := @, nr Ac, (Rep(Q,v)) (or
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simply #f when A and @ are understood from the context). For each pair of dimension vectors
v1, vz € NI we define the Hall multiplication

1) Mo+ Afs, (Rep(Q, 1)) ® A%, (Rep(@, v2)) = A%, (Rep(Q,v))
as in [ ]. Start with the Kiinneth morphism (refereed to as the external product in [ ,
Ch 2], and | , Proposition 5.4] in the equivariant setting)

® : Ag,, (Rep(Q,v1)) ® Ag, (Rep(Q,v2)) = Ag, xa,, (Rep(Q,v1) x Rep(Q, v2)).
Define
Rep(Q)v, v, = {x € Rep(Q,v) | (V1) C Vi} C Rep(Q,v).

We have the following correspondence of G,-equivariant varieties:

Gy xp (Rep(Q,v1) x Rep(Q,v2)) =—— Gy xp (Rep(Q) oy 0y) ——= Rep(Q, v1 + v2)

1

where p is the projection, and 1 : (g,z) — grg~" is the action by conjugation. Consider the

following 3 morphisms:
(1) The isomorphism
AG, xa,, (Rep(Q,v1) x Rep(Q, v2)) = Ag, (Gv xp (Rep(Q,v1) x Rep(Q,v2))) .
(2) The pullback p*:
P Ag, (GU X p (Rep(Q,vl) X Rep(Q,vg))) — Aq, (Gy xp (Rep(Q)uvy v))-
(3) The pushforward 7,:
et Ag, (Gy xp (Rep(Q)uy 1)) = A, (Rep(Q, v1 + v2)).

The map my, 4, (1) is defined as the composition of the Kiinneth morphism with the above 3
morphisms.

Proposition 2.1. The maps my, v, for vi,ve € N’ fit together, defining an N!-graded associative
R-algebra structure on HY(Q).

This is essentially Theorem 1 of | |, replacing the usual cohomology by oriented Borel-
Moore homology theory A.

Definition 2.2. The N/-graded A(pt)-module H%(Q) endowed with multiplication my, ., is the
formal cohomological Hall algebra (formal CoHA) associated to A and Q.

2.2. Formula of the formal Hall multiplication. Now let A be an oriented Borel-Moore ho-
mology theory, with Q C A(pt), extended to an equivariant theory by Totaro’s construction. In this
subsection, we use the pushforward formula in § 1.1 to give an explicit formula of the multiplication
My, vy The space Rep(Q,v) is contractible. Thus, we have the isomorphism

Ac,(Rep(Q,0)) = Ag, (pt) = RINIZ, ) s

where R := A(pt), and {)\é—}jzl’m’vi are the Chern roots of the tautological bundle R(v?) on
Gr (v, 00). We now describe the multiplication map

.yt f f
My vy + %m ® Hvz - %v1+v2‘
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Suy f 1157 Sva f
el jt i and H,, as R[] ]]ZE[S Lowp We view H,

HE as a subalgebra of R[[)\ licrj=1,..(u14va)is by sending XZ to AL, and )\”Z to )\IZH‘ .. Then, the

It is convenient to write H! as R[N]

multiplication map ., ,, can be considered as a map

Gy Gy S
My vy - R[[/\;'Z]]iefl,jzl,...,vg ® R[[/\gl]]ie;,tzl,..., R[[/\Z]]zef,g 1w
The following formula of my, 4, is essentially Theorem 2 in | ]

Proposition 2.3. For f; € ’Hf,i, i = 1,2, the product mu, v, (f1, f2), as a symmetric function in

NI o .
R[[)\}]]iell;:21,...,(v1+v2)i’ s given by the following formula:

] . )\//] )\/i Qij
Z O'(fl()\/g)fQ()\//i)HJEIHS 1 t= 1( ) >7
o€Sh(vi,v2) Hzel Hs 111i= 1()‘/” —r N%)

where a;; is the number of arrows from vertex i to vertex j.

Proof. Let i : Rep(Q)y, v, — Rep(Q,v) be the embedding. The pushforward 7, is the composition
of the following two morphisms:

Ty AP(RGP(Q,U)ULUQ) — AP(RGP(Q,’U))
Ty - AP(Rep(Q7U)) = AGu (Gv Xp Rep(vi)) - AG’U (Rep(Q7U))'

The pushforward 4, in the equivariant oriented Borel-Moore theory is given by i.(f) = f - €y, v,
where e, 4, is the equivariant Euler class of the normal bundle of ¢. The embedding 7 induces the
following embedding of vector bundles on BL := Grass(vi, 00) x Grass(vg, 00):

Rep(Q)vl,vz X(GU1XGU2) (EGU1 X EGUQ) — Rep(Q7 ) GU1><GU2) (EGU1 X EGU2)'
By definition, e, 4, is the Euler class of the quotient bundle. We identify the quotient bundle with
P AomoRE™ ™), R(v3 ™) = P (R(wh)” @ R(wh))*,
heH ijel
where R(r) is the tautological bundle of Grass(r,c0). Thus, the equivariant Euler class is

vt U2

eown = || [TT]N —F X0

i,j€I s=1t=1

As a consequence, the multiplication map 7, 4+, sends f1 € ’Hf,l and fo € Hf)z to pr (fi-f2-€vy 09)
where pr is the projection Grass(vi, R(v)) — Gr(v, 00). Applying Proposition 1.2 to pr, we get the
multiplication formula. O

Example 2.4. Let Q be a quiver with one single vertex and a loops. The formal cohomological
Hall algebra is H! = @, Hi, with HL = Q[A1,...,A,]®". The Hall multiplication of f; € H! and
f2 € HE_, becomes

Ji(A) f2 (N jegigr a
m(f1, f2) = : N —r A
{JC[l-%,JIﬂ} jenigsi =k A5)) jeg¢J ’

_ Z o- (fl(/\ly---7/\r)f2(/\r+1,---,)\n) H ()\Z 0 )\j)a)‘

{oeSh(r,n—r)} hgjereenienhi=r i) o 0 s
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3. THE GENERALIZED SHUFFLE ALGEBRAS

Let (R, F) be any formal group law. In this section, we define the generalized formal shuffle
algebra SH associated to the formal group law (R, F') and the quiver ). In the shuffle algebra
considered in this section, there are two quantization parameters tq,t3. Geometrically these two
quantization parameters come from the two dimensional torus T = G2, action on the cotangent
bundle of representation space of the quiver Q.

3.1. The formal shuffle algebra. The formal shuffle algebra SH is an N'-graded R[t,ts]-
algebra. As an R[t1,t2]-module, we have SH = @,y SHo. The degree v piece is

SH, = R[t1, 1] [N]S

ZGI s=1,...,v

For any v; and vy € N, we consider SH,, ® SH,y, as a subalgebra of
R[[t17t2:|] [[)\;]]iel,j:L...,(Ul—l—Ug)i

by sending A\ to AL, and A/’ to A!, .. Set:

t+vi
v v N —p N4 pty +Ft2
(2) facl = H H H )\//Z A/Z
iel s=11=1 F

To each arrow h € H, we associate two integers, mj, and mp+. Define
out(h) 1n(h) 1n(h) out(h)
(3) facy = H ( H H 1n(h Y " out(h) TE— H H out(h )\/Sin(h) g 'tz)),
heH s=1 t=1

where m-t =t +pt+p---+ptis the summation of m terms, for m € N. When my, = mp+ = 1,
the formula (3) can be simplified as

vt 1)2

facy = [T TTTTOVY —p X0 tp 1) V] —p Vi g 1),
i,j€l s=1t=1
where a;; is the number of arrows from 4 to j of quiver Q.
The multiplication of fi(\) € SH,, and fo(\") € SH,, is defined to be

) GU v
(4) Z O’(fl . f2 . facl . faCQ) S R[[tl, tg]] [[)\j]]iell;:21,...,(v1+v2)i'
O'ESh(vl,Ug)

3.2. The geometric construction of the generalized shuffle algebra. With notations as
before, let @ = (I, H) be a quiver. Let Q = Q L Q° be the double of Q. That is, @ has the same
vertex set as () and whose set of arrows is a disjoint union of the sets of arrows of Q and Q°P,
the opposite quiver. To be more precise, the set of arrows of Q is H LU H°P. There is a bijection
H — H°P, such that, for each h € H, there is a reverse arrow h* € H°P  with out(h*) = in(h) and
in(h*) = out(h). We have the following isomorphisms

Rep(Q, v) = Rep(Q,v) x Rep(Q°P,v) = T* Rep(Q, v).

The algebraic group G, acts on T* Rep(Q,v) by conjugation. The torus 7' = Gm? acts on
T* Rep(Q,v) the same way as in | , (2.7.1) and (2.7.2)]. Let a be the number of arrows
in @ from vertex ¢ to j. We fix a numbering hq,...,h, of the arrows in ). The corresponding
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reversed arrows in Q°P are labelled by h%,---  h%. For h, € H, and B = (B,) € Hom(V*, V),

i . Y a*
B* = (B}) € Hom(V7, V"), define the T' = G7,~action by
t1-By:=t,""B,, ts- Bt =1, "B
We assume the T-action on T* Rep(Q,v) satisfies the following.

Assumption 3.1. For any h € H, t{""tJ""" is a constant, i.e., does not depend on h € H.

Remark 3.2. One example of T action satisfying Assumption 3.1 is the following. For any pair
of vertices 7 and j with arrows hy, ..., h, from i to j, let the pairs of integers be my, =a+2—2p
and Mmps = —a+2p. Let the T action on T* Rep(Q, v) to factor through Gy, i.e., via t; = to = h/2
where & is the weight of G,,. This choice is essential in § 7 and 8.

For any pair of dimension vectors v1,vs € N/, we consider a map

my o, ¢ Ac, x7(Rep(Q, v1)) @Rty 1] AGw, x1(Rep(Q, v2)) = Ag, .. x7(Rep(Q, v1 + v2)),

defined as follows. Let v = v; 4+ vo. In the Lagrangian correspondence formalism in § 1.2, we take
Y to be Rep(Q,v1) X Rep(Q,v2), X’ to be Rep(Q,v1 + v2), and V to be Rep(Q)y, v, Recall that

Rep(Q)v, v, = {x € Rep(Q,v) | (V1) C Vi} C Rep(Q,v).

We write G := G,, and P C G,, the parabolic subgroup preserving the subspace V;. Let L :=
Gy, % Gy, be the Levi subgroup of P.
As in § 1.2, we have the following Lagrangian correspondence of G x T-varieties:

G xp TY e TG xp V) ~—2— Z —"= Rep(Q, 01 + v2).
S

v1,v2°

®: Ag,, x7(Rep(Q,v1)) @Rt 15] Ao, x7(Rep(Q, v2)) = Ag,, xG,, x7(Rep(Q, v1) X Rep(Q, v2)).
Consider the following sequence of morphisms:
(1) The isomorphism: Ag,, xG,,x7(Rep(Q,v1) X Rep(Q,v2)) = Agxr(G xp T*Y).
(2) The pushforward map: ts : Agxr(G Xp T*Y) = Agxr(T*(G xpY)).
(3) Following the notations in the Lagrangian correspondence diagram, we have

We now define the multiplication map m We first have the Kiinneth isomorphism.

Acxr(T*(G xp Y)) -2 Agyr(2) Y Agur(Rep(Q,v)).

Note that 1 is a proper morphism, hence the push-forward 1, is well-defined.
S

1o 10 be the composition of the Kiinneth isomorphism with the above sequence

We define map m
of 3 morphisms.

S

v ve ATE associative.

Proposition 3.3. The multiplication maps m

Proof. The proof follows the same idea as in [ , Proposition 7.5]. For the convenience of the
readers, we include a proof here. Fix a flag Vi C Vo C V, where V; is an I-tuple subspaces of V' of
dimension vector v1 + - - -+ v;. Let P;, P2 be the parabolic subgroups Py := {g € G,|g(V1) C V1 },
and Pip == {g € G, | g(V1) C V1,9(V2) C Va}.
We first define the following varieties.
e Let X; be the set of quadruples (Fy, Fy,a), where F} C Fy C V is a flag such that F} =
Vi, Fy = V;, and a € Rep(Q,v) is an endomorphism of the vector space Fy & (Fy/Fy) @
(V/F3).
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e Let X5 be the set of pairs (F1,a), where Fy C V, such that F; = V; and a € Rep(Q,v) is
an endomorphism of the vector space Fy & (V/Fy).
o X3= Rep(vi)‘
We then define the following correspondences. For i = 1, 2,3, let W; be the following
Wy = {(F1,a) | F; C V,such that Fy = Vi, and a(F}) C Fy,for a € Rep(Q,v)}.
Wy = {(F1, F»,a) | F1 C F5 C V,a € Rep(Q,v),such that F; =V}, and a(F;) C Fj,for j =1,2}.
W3 = {(F1, F,a) | F1 C F5> C V,a € Rep(Q,v),such that F; = V;, for j = 1,2, and
a € End(F) @ V/F}), a preserves the subspace {0} & Fy/F}.

Let Z; be the conormal bundle of W;. Consider the following commutative diagram with the
square being Cartesian.

T X, 2 7, — O T,

] K

Zo Zs
¢>2\ ifbs
T X;.

By Lemma 1.7 and Lemma 1.9, we have Is = I; o I3, where

Iy =90 (ﬁ : AGXT(T*XQ) — AGxT(T*Xg).
Iy = o, 0 (25; : AGXT(T*Xl) — AGxT(T*Xg).
I3 = 3. 0 ¢3 0 Agxr(T"X1) = Agxr(T™ X2).

An argument similar to | , Lemma 3.4] implies the associativity. O

Now assume A is an arbitrary oriented Borel-Moore homology theory, with Q C A(pt), extended
to an equivariant Borel-Moore homology by Totaro’s construction (see Example 1.1). For any
v € N’ we identify

SH, = R[[tl,tg]][[)\i Sy

iel,s=1,...,v°

with the Ar(pt)-module Ag, x7(Rep(Q,v)). Such identification comes from the extended homotopy
equivalence property of A, i.e.,

Ag,x7(Rep(Q,v)) = Ar(pt) ® A(BG,) = R[t1, to] [N]

iel,s=1,...,.v%"

We identify the algebraically defined formal shuffle algebra multiplication in § 3.1 with the

geometrically defined mfwz as follows.

Proposition 3.4. Assume A is an arbitrary oriented Borel-Moore homology theory, with Q C
A(pt), extended to an equivariant Borel-Moore homology by Totaro’s construction. Under the iden-
tification

SHy = Rt 2] NI ) i = Aguxr(Rep(Q,v)),
the map mfwz is equal to the multiplication map (4) of the shuffle algebra.

Proof. Let €t be the equivariant Euler class of the normal bundle of the embedding

V1,02
L Gv Xle,UQ TY — T*(GU XGvaz Y).
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The normal bundle of ¢ is isomorphic to T*G/P as a bundle over the Grassmannian G/P. Also
T*G/P is in turn isomorphic to @, ;(R(v]) ® R(v3)*). Thus we have
v v
€or vy = H H H(Xi —r X' +ptL +Ft2).
iel s=1t=1
Therefore, ¢, is multiplication by ey, ,,-
The composition Z := Ty, (X x X') - W — G/P is a vector bundle, where the second map is
the natural projection. It induces a morphism EG xg Z — EG xg (G/P) = BL. Recall that

BL = Gr(vy,00) x Gr(vy,00) = EG/P % BG.

Note that EG xg T* Rep(Q,v) is a vector bundle over BG. Let p*T™* Rep(Q,v) be the pull-back
vector bundle on BL via the projection p : BL — B(G. The natural map v : EG xXg Z —
EG xg T*Rep(Q,v) factors through ¢; : EG xg Z — p*T* Rep(Q,v) by the universality of the
pullback. We summarize these notations in the following diagram

EGXGZ
(\\\wl
N

p*T* Rep(Q,v) — EG x¢ T* Rep(Q, v)

k E

BG = Grass(v, 00).

The pushforward 1), is the composition p’, o ..

The map ¢ : EG xg Z — p*T* Rep(Q,v) is an embedding of vector bundles on BG. The
pushforward 1, is the multiplication by the equivariant Euler class e%’l{vz of the normal bundle of
the embedding ;. The normal bundle to ¢; can be identified with

%omé(R(vl), R(v2))

=P H#omo (R™ ™), Ry ") P @ #omo (R, R(v)™))
heH heHopP

over BL = Grass(vy, 00) x Grass(vg, 00). Here, the first copy @,y #omp (R(v‘f“t(h)), R(vizn(h))) is

considered as a subspace of Rep(Q,v), and the second copy @,¢ fop omo(R(v(fut(h)), R(vizn(h)))

as a subspace of Rep(Q°,v). Thus, the equivariant Euler class of the normal bundle to v is
U;)ut(h,) Ui2n(h,) viln(h) Ugut(h)
"in(h ’ " h .
611%11,112 = H ( H H ()\t in(h) 0 )\sout(h) +pmy - tl) H H ()\t out(h) —F )\sln(h) 5 M t2)>.
heH s=1 t=1 s=1 t=1

So far, we obtained that ¢, is multiplication by e; ., and 1. is multiplication by eff,vz. The

map p’ is the pull-back of p via the projection n/. Therefore, p’ is also a Grassmannian bundle,
and consequently p/, is given by Proposition 1.2. Putting all the above together, the map mfhvz is
given by exactly the same formula as (4).

Remark 3.5. When A is the equivariant Chow group with Q-coefficients, under the identification,
SH, = Qlty, tz][/\i]iee”m:lmvi = Ag,x1(Rep(Q,v)),
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Proposition 3.4 still holds after replacing the formal power series by power series. Similar for the
equivariant K-theory, which will be spelled out in detail below.

3.3. An example: K-theoretical shuffle algebra. As an example, we take A to be the K-
theory with rational coefficients. We relate the shuffle algebra SH with the Feigin-Odesskii shuffle
algebra ( see [ ]) in the Jordan quiver case.

For any line bundle p : L — X on a smooth quasi-projective variety X. Let s : X — L be the
zero-section. The resolution of s,Ox:

1= p*LY - O = 5.0x =0
implies that the first Chern class of L in the K-theory is

(5) c1(L) == s"s.(Ox)=1—-L".
As a consequence, the formal group law (K (pt), F;,) is
(6) F(u,v) =u+p, v=u+v— uv.
In particular,

u—v
(7) U—Fn V=T

For r € N, let R(r) be the tautological vector bundle of Grass(r,o0) and let F1(R(r)) be the
associate full flag bundle. We identify K (Grass(r,o0)) with Q[2F, ..., 25]®" with z; being the i-th

tautological line bundle (rather than its 1st Chern class) of FI(R(r)). Let s; be the one-dimensional
natural representation of the i-th copy of G, in T'. We have the following.

Corollary 3.6. Let Q be any quiver, and A be the K-theory with rational coefficients. Assume

my, = mps =1 for any h € H. For any v € N! | identify SH, with Q[(2})*,..., (zii)i]i@evl as above.
For any pair of dimension vectors vi,vs € NI, and f; € SHy, for i =1,2, my, 0, (f1 ® f2) is equal

to

vl v i Ul 1)2 11

//’L'
DRNRY IERTREE 101 01 Ce iy ) 0100 (R S R
//J Z”]S

o€Sh(vt,v—v2) icl s=1t=1 1_ WZ i,jel s=1t=1 12

Proof. Recall that t; is the first Chern class of s;, hence by (5), we have t; = 1 — %, for i =
1,2. Similarly, \i =1 — Z% Plugging-in to Proposition 3.4 while using (6) and (7), we get this

corollary. 0

Example 3.7. Let @ be the Jordan qulver and A be the K-theory with rational coefficients. Then
as a vector space, SH = @, Q[Sl , 85 ][zli, ..o, 25]®n . The multiplication SH, ® SHy_r — SHn
sends fi(z1,...,2r) @ fa(zp41,- -, 2n) to

(1- ) - 20 - 25)
> oo (nr 11 s ),

{oeSh(r,n—r)} 1<j<r,(r+1)<i<n &
Let SH' be the shuffle algebra defined by Feigin-Odesskii in | | (see also | ]). By defini-
tion, SH' = @ Qlqf, 65 [27, - - -, 27]%", with multiplication fi(21,...,2.)® fa(2r41, .-, 2) defined

by

DS (fl.f2. 11 (1_q12i/2j)(1—q22i/2j)>.

{reSh(rn-1)} 1jsnirrnsisn (7 A/ T 0027 )
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Define an algebra homomorphism SH' — SH by
qi — si_l, for i =1, 2;
fz1,ooyzn) = f(z1,. .0, 20) Yy, for n € N,

where
.= J[ (- Q1Q2—)(1 - Q1Q2—))
1<j<i<n Zj
This map is well-defined, since the factor Y,, is invariant under the action of Sh(r,n —r). A
straight-forward calculation shows that this is an algebra homomorphism.

When @ is the cyclic quiver, and A is the K-theory, it is shown in | | that the shuffle algebra
is isomorphic to the positive half of the quantum toroidal algebra of type A.

4. THE PREPROJECTIVE COHOMOLOGICAL HALL ALGEBRAS

In this section, we introduce the main object to be studied in this paper, the preprojective CoHA.
The representations of this algebra are realized as A-homology of Nakajima quiver varieties. Now
we describe the multiplication of this algebra.

4.1. Hall multiplication. Notations are as before. Let Q@ = (I, H) be a quiver, (not necessarily
edge-loop free) and let v € N/ be a dimension vector. The group G, := [Lic; GL,i acts on the
cotangent space T* Rep(Q, v) via conjugation. Let g, be the Lie algebra of G,. Let

Moy - I Rep(va) - g;k)v (l‘,l‘*) = [l‘,ﬂj‘*]

be the moment map. Note that the closed subvariety p,(0) C T* Rep(Q,v) could be singular in
general.

We consider the N/-graded R[t1,ts]-module AP(Q) := @, e APu(Q) with AP, (Q) = Ag, x7 (15 1(0)).
When both A and @) are understood from the context, we will use the abbreviations P and P,. For
each pair vy, vs € N/, we define the multiplication map mfhvz : Py, ® Rt1ts] Puo = Pui+us-

We write v = v1 + vo. We consider the Lagrangian correspondence formalism in § 1.2, with the
following specializations: Take Y to be Rep(Q,v1) x Rep(Q,v2), X’ to be Rep(Q,v) and V to be
Rep(Q)v, v,- As in § 3.2, we write G := G, for short. Let P C G, be the parabolic subgroup and
L := G,, x Gy, be the Levi subgroup of P. Recall in § 1.2, we have the following correspondence
of G x T-varieties:

-1 —1 * é 0
G xp (1, (0) X 4 (0) === Tg.X 7

T

GxpT Yt TG xpY)~—— 7 "~ Rep(Q, ).

We have the Kiinneth morphism (which may or may not be an isomorphism).

® : Poy OR[ty 1] Poa = AGu, %Gy x7 (3, (0) X 1, (0)).
Consider the following sequence of morphisms:

(1) The natural projection G,, x G,, « P is a homotopy equivalence. It induces the follow-
ing isomorphism Ag, xy, <7 (ty, (0) X p1,1(0)) = Apsr(py;' (0) X p,'(0)). We have the
following isomorphism

Apsr (it (0) X 13,1 (0)) 2 Agxr (G xp (15,1(0) x p;1(0))).
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(2) Following the Lagrangian correspondence diagram, we have

. ot ¥, _ -~
Aaxr(TEX) —= Acxr(Za) —= Agxr(py 1(0)) = Py,

where ¢! is the Gysin pullback of ¢.

P

1 vy 18 defined to be the composition of the above morphisms.

The map m

P

v v Jit together to define an associative algebra structure on P.

Theorem 4.1. The maps m

Proof. We keep the same notations as in the proof of Proposition 3.3. By definition, ¢, X3 = 1, L(0).
By Lemma 1.3, T5 X2 = Gy X p; (115,7(0) % u;;ﬂ?) (0)) and

TEX1 = Gy %y (151(0) X 123,1(0) i3, (0)):
By Lemma 1.7 and Lemma 1.9, we have Is = I; o I3, where
I =1, 08} Agxr(T5X2) = Aaxr(T5X3).
I =2, 0 85+ Aaxr(T5X1) = Acxr(T5X3).
I3 =3, 0 8+ Aaxr(T5X1) = Aaxr(T5Xo).
An argument similar to | , Lemma 3.4] implies the associativity of the multiplication m”. O

Definition 4.2. For any v € N/, consider the N’-graded R[t;,t2]-module 4P(Q) := DPoent Ap,,
where 4P, := Ag, x7(1;1(0)). The preprojective cohomological Hall algebra (CoHA) of the quiver
Q is the associative algebra 4P(Q) endowed with the Hall multiplication m”

v1,v2°

The name preprojective CoHA is motivated by the fact that the subvariety u;!(0) C Rep(Q,v)
parametrizes representations of the preprojective algebra.

Theorem 4.3. Under conditions of Proposition 3.4, there is a well-defined morphism of R[t1,t2]-
algebras
AP - SH

induced from the embedding i, : ;1 (0) < Rep(Q,v).
Proof. The pushforward i,, induces a well-defined morphism
ive : Aaxr (11, (0)) = Agxr(Rep(Q,v)) = SH,.

Recall that the Hall multiplication of 4P (resp. SH) is defined by the composition of the Kiinneth
morphism and the morphism in the first row (resp. second row) in the commutative diagram in
Lemma 1.5. Taking into account the compatibility of the Kiinneth morphism with the proper
pushforward ([ , § 2.1]), together with Lemma 1.5, we get the conclusion. O

Remark 4.4. The algebra homomorphism in Theorem 4.3 becomes an isomorphism after suitable
localization. Indeed, y;1(0) has only one T-fixed point. It follows from the Thomason localization
theorem | , Theorem 6.2], which in the present setting can be found in | |, that i, is
an isomorphism when passing to a localization. This localization of R[t1,ts, Ai]®v is at the prime
ideal generated by all the symmetric functions in A, without constant terms. For the power series
ring, this is the same as passing to R((t1,t2)). However, for OCT’s described in Examplel.1(3),
e.g., equivariant Chow groups and K-theory in the sense of Thomason, these two localizations are
different.?

2We thank a referee for pointing this out to us.
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Let P be the quotient of P by the torsion part, where torsion means elements which vanishes
when passing to the localization at the above ideal. Then, i,, induces an isomorphism between P°
and SH®.

4.2. Spherical subalgebras. In general, the algebra P defined above and the shuffle algebra SH
in § 3 are different, but closely related. Each one has a spherical subalgebra. Conjecturally, their
spherical subalgebras are isomorphic, but at present, this is not known.

For any vertex k € I of the quiver @), let e, be the dimension vector such that e}; = 0j;. In other
words, e has value 1 on vertex k, and 0 otherwise.

Definition 4.5. The spherical subalgebra 4P*(Q) C 4P(Q) is the subalgebra generated by P,
for k varies in I. We will abbreviate as AP® or P* if understood. Similarly, define SH® C SH to
be the subalgebra of SH generated by the set {SH,, | k € I}.

Proposition 4.6. The morphism in Theorem 4.3 restricts to a surjective morphism on the spherical
subalgebras

P — SH®.
Proof. The surjectivity of the restriction P°* — SH?® follows from the isomorphism P, = SH,,
for k € I. Indeed, this is a consequence of the isomorphisms P, & Ag, «7(pt) = Ar(pt)[2;] and
SHe, = Ar(pt)[NF]. O

5. REPRESENTATIONS OF THE PREPROJECTIVE COHA

We construct representations of AP(Q) in this section. We show that 4P(Q) acts on the equi-
variant A-homology of Nakajima quiver varieties.

5.1. Preliminaries on Nakajima quiver variety. In this subsection, we recall the definition of
Nakajima quiver varieties in [ ].

For a quiver @, (not necessarily edge-loop free), we introduce the framed quiver QY. whose set
of vertices is I LI I’, where I’ is another copy of the set I, equipped with the bijection I — I’,
i+ i'. The set of arrows of Q% is, by definition, the disjoint union of H and a set of additional
edges j; : i — i, one for each vertex i € I. We follow the tradition that v € N’ is the notation for
the dimension vector at I, and w € N’ is the dimension vector at I’. We denote Rep(Qo, (v, w))
simply by Rep(Q, v, w).

Let Q¥ = Q¥ U QY°P be the double of Q¥. We have the isomorphism

Rep(@, (v,w)) = T*Rep(Q”, v, w) = Rep(Q, v) x Rep(Q?,v) x Homy, (W, V) x Homy;(V,W).
Let ptpa : T* Rep(QY, v, w) — gl¥ = gl, be the moment map
pogw + (2, 2%,1,7) = Y [, 2] +i0j € gl
For any 6 = (6;)ic; € Z, let xg : G, — Gy, be the character g = (g;)icr — [Licr det(g;)~%. The set
of yg-semistable points in T* Rep(Q, v, w) is denoted by Rep(QY¥, v, w)**. The Nakajima quiver
variety is defined to be the Hamiltonian reduction
My (v, w) = f1,,(0)//6 G-

The following description of stability condition can be found in | , Corollary 5.1.9]. When
6 =0"=(1,---,1), the point (z,2*,i,5) € u~1(0) is #7-semistable, if and only if, the following
holds: For any collection of vector subspaces S = (S;)ick C V = (V;)ick, which is stable under the

maps z and z*, if Sy C ker(jy) for every k € I, then S = 0.
In this paper, we use the stability condition 8 unless otherwise specified.
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5.2. Representations from quiver varieties. Let v;,v2 € N/ be two dimension vectors. Let
v = v1+ve. We fix an I-tuple of vector spaces V' of dimension vector v. We fix V4 C V an I-tuple of
subspaces of V' with dimension vector v1. Let V5 := V/V;, with the projection map pry : V — V5.
As in § 1.2, we set G = Gy, and P = {g € G | g(Vi) C Vi}. We consider the Lagrangian
correspondence formalism in § 1.2, specialized as follows: We take X’ to be Rep(Q,v,w) and Y to
be Rep(Q,v1, w) x Rep(Q,v2), and take V to be

Rep(Q) vy o = {(,7) € Rep(QY,v1 4 va,w) | z(V1) C Vi} € X',
Asin § 1.2, set X := G xpY, W := G xp Rep(Q)uv; vo,w, and Z := T};,(X x X') the conormal
bundle of W. We then have the correspondence
Tx <Lz Ly,
Lemma 5.1. Notations are as above.
(a) We have the following canonical isomorphisms of G-varieties.
T*X' = T*Rep(QY, v1 + va, w) = Rep(QY, v1 + va, w) X Rep((QV) P, vy + vg,w) = Rep(QY, v1 + va, w).
T*X =G xp{(c,x,x*,i,7) | ¢ € py,z € Rep(Q,v1) X Rep(Q, v2), 2™ € Rep(Q?,v1) X Rep(Q?,v3),
j € Hom(V1,W),i € Hom(W, V1), [z,2"] +i0j = pr(c)},
where pr(c) is the projection of ¢ from P, in gy, © Gu,-
Z =G xp{(z,2",i,j) € T*Rep(Q", v1 + vo,w) | (z,2*)(V1) C Vi, Im(i) C Vi }.
(b) For (g,z,x*,i,7) € Z, the maps ¢, ¥ are given by
QS((g,x,x*,i,j) mod P) = (g, [x,2"] + 10, pr(m),pr(m*),z’vl,jvl) mod P,
¥((g,@,2*,4,5) mod P) = (gzg ', g9z*¢",jg~", gi).
(c¢) We have the following canonical isomorphisms of G-varieties.
TEX" = 13,(0).
TEX = G xp (11,14(0) X i, (0)).
Za =G xp{(x,2%,1,§) € piy,(0) | (z,2*)(V1) C Vi, Im(i) C V1 }.
The maps ¢ : Zg — T:X and U Zag — TEX! are induced from ¢, in (D).
Proof. The proof goes the same way as | , Lemma 7.4]. We only explain how to get the formula

of T*X in (a) here. The rest are similar. By [ , Lemma 7.1, we have T*X = T}(G x Y)/P.
Thus,

T*X = G xp {(f,a) €(g x Rep(Q",v1,w) x Rep(Q,v2))" x (Rep(Q", v1,w) x Rep(Q, v2))
(8) | f(=b,[pr(b), a]) = 0,vb € p}.
For (f,a) as in (8), we write f = f; X fo, where

fieg’, and fo € (Rep(Q,vl,w) X Rep(Q,v2))*.

Write b := gl,, x gl,, for short. Starting with an element (f,a) in (8), we define an element
f € (gxb)* by f(g,h) == f(g,[h.a]). Let & : p — g x b be the linear function b — (b, — pr(b)).
Therefore, we have f(d'(p)) = 0.

Identify (g x h)* with g x h via the non-degenerate pairing (g1, g2) := tr(g1g2). Let 6 : p = gx b
be the linear function b + (b, pr(b)). Then, §'pt is identified with dp = p. Therefore, f € (g x h)*
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corresponds to (¢, pr(c)) € dp for some ¢ € p, and its first component f; corresponds to ¢ under the
*

~

identification g* = g. The second component f, of f satisfies
(9) follh,a)) = tx(pr(c) - h), for any h € b.

For vector spaces E, F', the bilinear function

Hom(E, F) x Hom(F, E) — k, (f, f*)— tr(fo f*).

gives an isomorphism Hom(E, F')* = Hom(F, E'). We identify the second component fs with some
element b € Rep(QY°P, vy, w) x Rep(Q°,v3). The equality (9) yields [a,b] = pr(c). This proves
(a). O

We use the following abbreviations: T*Y* = Rep(Q, vy, w)*s x Rep(Q,v2) C T*Y, and T*X's =
Rep(QY,v,w)* C T*X'. There is a bundle projection T*X — G xp T*Y. We define T*X* to be
the preimage of G xp T*Y® under this bundle projection. In particular, we have

TEX® =G xp (TEY NT*Y®) = G xp (4, (0)%° x 11,,1(0)),

for L = Gy, x G,,. We define Z° := =1 (T*X’*) and Z§ := Z° N Zg.
Lemma 5.2. We have ¢(Z°) C T*X?.

Proof. This follows from the description of stability condition % in § 5.1. Indeed, assuming there
is an element (g, z,x*,i,7) € Z so that ¢((g,z,x*,i,7)) ¢ T*X*, then by definition of T*X* in V}
there is a sub-vector space contained in ker(j) which is fixed by (pr(z),pr(z*)). This sub-vector
space is in turn a sub-vector space of V' via the inclusion V; < V, contained in ker(j), which is
still fixed by z,z*. (This is because that (g,z,2*,i,j) € Z implies that V} is a sub-representation
and hence for any vector a € V; the action of (z,2*) coincide with that of (pr(z),pr(z*))). This
implies that (g, z,x*,4,j) is not in Z°. Therefore ¢(Z%) C T*X". O

Thus, we have the following diagram of correspondences of G, x T x G-varieties.

(10) T X 4 Zs — L TEX N T XS
GxpT Y rxs <2 zs Y _pexrs,

Lemma 5.3. The left square of diagram (10) is a pullback diagram.

Proof. By Lemma 5.1, we have:
Zé =G xp{(z,2%,i,j) € ,u;}U(O)SS | (z,2*)(V1) C Vi,Im(i) C V4 }.
TEX® = G xp (Hyy 0 (0)7 % 11, (0)).

To prove this lemma, we need to compute the fiber product T3 X?® xp«xs Z° and identify it with
Z¢. Indeed,

TeX? Xpexs Z°
=G xp {(x1,27,11, )1, %2, 23), (x,2",i,j) € THX® x Z° | pr(z) = (1, 22), pr(z*) = (a7, 23),
i =iy = g et +ioj = ([, i) + iy o i) X [wa, 23] = 0}
=G xp {(z,2",1,7) € pyp(0)** | (2,2") (V1) € V1,Im(i) C V1}
=Z¢.

This completes the proof. O
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Let v, w € N! be the dimension vectors. As the action of Gy on py3,(0)% = pyy,(0) N
Rep(Q, v, w)*® is free, we have

M, w) = Arxa, (M(v,w)) = Ag,xTxG., (N;}u(o)ss)-
For each w € N, and each pair vy, v € N/, we define maps
Ay v - M(V1,W0) @ Py, = M(v1 + v2, w)

as follows.
We start with the Kiinneth morphism.

M(v1,w) X Poy =Ac,, xGuxT (1 (0)*) @ Ay, w1 (k3 (0))
—AG, Gy xTx G (Han0(0)° X 11,1 (0))
(1) “Aarxc, (G xp (113 (0) X i) (0)))
We define the map a,, ,, to be the composition of the morphism in (11) with the following morphism
P, 0" Ag,xrxc, (TEX®) = Ag,xrxc, TEX N TX") = M(v,w),

where the pullback ¢ is the Gysin pullback of ¢ in diagram (10). Note that v is a proper map,
since it is a restriction of a proper map. In particular, 1, is well-defined. Similarly, ¢ : Z% — T*X*
is a local complete intersection morphism (the condition for being so is local, hence if ¢ : Z — T* X
is a local complete intersection morphism, then so is ¢ : Z° — T*X*). By 1.1(4), ¢*, being the
Gysin pull-back via a complete intersection morphism is well-defined.

Theorem 5.4. For each w € NI, the maps
QAuy vy M(v1,w) & Py, — M(v1 + v2,w)

fit together to define an action of AP on M(w) := @, M(v,w). In other words, ay, ., induces an
R[ty,to]-algebra homomorphism

& : 4P - End ( D ATng(Sm(v,w))).

veNT

Proof. The proof follows from the same idea as the proof of Theorem 4.1. More precisely, we fix a
flag Vi € Vo C V, with dimV; = v1 + - - 4+ v;. Fix an I-tuple of vector spaces W with dimension
vector w. We define the following varieties:

e Let X; be the set of quadruples (Fi, Fs,a,j), where F; C F, C V is a flag such that
Fy 2 Vi, F, 2 Vs, and a € Rep(Q,v) is an endomorphism of the vector space Fy @ (Fy/F1)®
(V/F3). j is an element of Hom(Fy, W).
e Let Xo be the set of triples (F1,a,j), where F; C V, such that F; = V; and a € Rep(Q,v)
is an endomorphism of the vector space Fy & (V/Fi). j is an element of Hom(F;, W).
e X3 =Rep(Q,v) ®Hom(V,W).
We then define the following correspondences. For i = 1,2, 3, let W; be the following.
W1 ={(F1,a,j) | F1 C V,such that F} =2 Vi, and a(Fy) C Fy,for a € Rep(Q,v),j € Hom(V,W)}.
Wy = {(F1, F2,a,7) | Fi C F» C V,a € Rep(Q,v),such that F; 2 V;, and a(F;) C Fj,
for i =1,2, and j € Hom(V,W)}.
W5 = {(F1, F3,a,v) | F1 C F» C V,a € Rep(Q,v),such that F; = V;, for i = 1,2, and
a € End(F; @ (V/F1)),a preserves the subspace {0} @ (F5/F}), and j € Hom(Fy, W)}.
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We have the inclusions W; € X3 x X, Wy C X3 x X1, and W3 C X5 x X;. It is clear that those
inclusions give an isomorphism Wy = W; X x, W3. We consider

Zl = Tﬁ/l(Xg X Xg), 22 = T%Z(Xg X Xl), Zg = T{/kva(XQ X Xl)

The intersection (W7 x X1) N (X3 x W) is transversal in X3 x X9 x X7. Thus, by [ , Theorem
2.7.26] we have an isomorphism Zy X+ x, Z3 = Z5. Asin Theorem 4.1, we have dim(Z;)+dim(Z3) =
dim(Z2) + dim(7* X3) by Lemma 1.9.

Let Py := {9 € G = Gy, 1vo+vs | 9(V1) C V1}, with Lie algebra p;, and P := {g € G | g(V;) C
Vi,i = 1,2} with Lie algebra p. By Lemma 5.1, we have

T*Xo C G xp (pl X Rep(@, vy, w) X Rep(Q, va + vg)),

T"X: CG xp (p x Rep(Q¥,v1,w) x Rep(Q, v2) x Rep(Q, U3)).

Define
T X3 = Rep(@, vy + vy + v, w)*,
T X5 :=T"XoNG xp, (p1 % Rep(QY, vy, w)*® x Rep(Q, v + v3)),
T*X{:=T"X1NG xp (p X Rep(@, vy, w)** x Rep(Q,v2) x Rep(Q, U3)).
Define

735 =y (T7X3), Z5 =y {(T7X3), 27 := ¢y (T7X3).

Then we have the following diagram with the square being Cartesian.

x5 3z L ex,

N s

25 —= 23,

@\ WS

T*X;.

We define the maps I, Is, I3 as in Theorem 4.1. The same argument shows Iy = Iy o I3. This
implies @y, ., is an action map. O

By convention, we consider the right action of P on M(w). Therefore, the multiplication of
End(M(w)) is understood as composition of right action operators.

Remark 5.5. If one uses the stability condition 6~ = (—1,--- ,—1) in the definition of Nakajima

quiver variety, the Lagrangian correspondence Z(Gng)_ss should be adjusted to

267 = Gxp {(@at i) € pp (00T | (@,a) (Vi) € Visker(j) O V).

The Lagrangian correspondence formalism will give us a left action of PP on Ag,, x7(9Mg- (w)). This
left module of P° coincides with the natural left action of P°? on M (w), under the identification
of My+ (v, w) and My- (v, w), sending any representation V to its dual V'V,



26 Y. YANG AND G. ZHAO

5.3. Nakajima’s raising operators. In this section, we take @) to be an arbitrary quiver. We in-
terpret the action of the CoHA 4P(Q) constructed in §5.2 in terms of Nakajima’s raising operators.
This interpretation allows us to compare AP(Q) with the quantum groups.

We start by recalling the raising operators constructed by Nakajima in [ , |. Recall
in §5.1, we denote by (v, w) the Nakajima quiver variety with the fixed stability condition 6.
Let M (v, w) be the affine quotient of 4,7, (0). That is,

Mo (v, w) := Spec(kluy 1, (0)] ),

where k[u, 1,(0)] is the coordinate ring of 4, %,(0). We have the resolution of singularities 7 :
M(v,w) — My (v, w). For two dimension vectors v; and vy, the composition M (v;, w) — My (v;, w) C
Mo(v1 + v2,w) are denoted by ;. Let

Z(v1,v2,w) = {(21,22) € M(v,w) X M(vy,w) | m1(x1) = ma(22)}
be the Steinberg variety. By the construction of 9t(v, w), we have the tautological vector bundle
1 H(0)% X, V= M(v, w)

associated to the principal G,-bundle y;1(0)% — (v, w). Here V is the G, representation with
dimension vector v. We denote the vector bundle by V(v, w).

We now consider the case when v = v9 — eg, where e, is the dimension vector whose entry k is 1,
and other entries are 0. The Hecke correspondence C} (v2, w) (see [ , |) is an irreducible
component of Z(vy, vy, w), defined as the set of quintuples {(x,z*,14,7,S)} up to G,-conjugation,
where (z,3%,7,7) € pyr,(0)* and S C V is a x, z*-invariant subspace containing the image of i
with dim(S) = vy — ej,. We consider G} (v2,w) as a closed subvariety of M (vy — e, w) x M (v2, w)
by setting

(z', 2% i, j1) := the restriction of (z,z*,4,7) to S, (22,2242, 5%) = (x,z*, i, ).
The component C’k (v2,w) is smooth, and it is a Lagrangian subvarlety of M(vg — e, w) X M(vy, w)
as shown by Nakajima. In particular,

dim M(vy — ex, w) + dim M(ve, w)
5 .
The tautological line bundle £, of C}f (v, w) is defined to be the quotient
Ly = V(vg,w)/V(v1,w).

Nakajima defined the following raising operators. Let f(t) € Ap(pt)[t] be a power series. Then
f(c1(Ly)) is a well-defined element in Ag, x7(C; (v2,w)). We have the following diagram:

dim C}f (v2, w) =

C]j(”Qa )(H m(’l)Q — €k, W ) X Dﬁ 7}27

/ \

M(ve — e, w) M(vy, w).

Denote by p; : C,j (v, w) — M(v;, w) the composition of the inclusion with the i—th projections, for
i=1,2, and v = v2 — eg. Let U(f(c1(Lk))) € Endgyy, 1,](Ac, xr (M(w))) be the raising operation
given by convolution with f(c1(Lg)). In other words, let o € Ag,, x7(M(v1,w)),
W(f(e1(Lr)))(@) = pax(pi(a) N fle1(Lr)))-
For the dimension vector ey, the condition [z, z*] = 0 in the moment map

. Rep(Q, er) x Rep(Q°P,ex) = k, [z,2"] =0
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is automatic. Therefore, pz!'(0) = T Rep(Q, ex). In particular, p_'(0) is a vector space with
G, = Gp-action, and we have the isomorphism

Pe, = Ac,x1(pg, (0)) = Ag,, x7(pt) = Ap(pt)[z®].

Let & be the natural one dimensional representation of G, = Gp,. Then, 2() can be viewed as

c1(&r) € Ag,xr(pg1(0)).

In the case of v1 + e = vo, we write v = vy for short, for the Lagrangian correspondence, we
have Y = Rep(Q,v — ex,w) X Rep(Q,er), X' = Rep(Q,v,w). Therefore, the correspondence in
this case becomes

-1 ss -1 ¢ s Y -1 ss
(12) Gy Xp (Mv—ek,w(o) X Mey (0)) -~ ZG - :uv,w(o)

Theorem 5.6. For any f(t) € Ar(pt)[t], view f(2F)) € P., = Ar(pt)[2F)], we have the equality
U(f(er(Lr) = 2(F(=1))
in Endpy, 1,1(Ac, < (M(w))), where ® is the action of the preprojective CoHA Ap.

Proof. Taking the quotient by G, of the Lagrangian correspondence (12), we get the following
commutative diagram.

¢ ¥

T*Xs Zs T*Xls
) e
_ _ ¢ P _
Gy %P (Hyte, (0)*° X g1 (0)) Z¢ p ' (0)%

L l

M(v — ex, w) Cif (v, w) = M(v, w)

The vertical maps ¢, ¢ are closed embeddings. In the above diagram, the map ¢ is a smooth
morphism of smooth varieties. The usual pullback 5* is well-defined. We first show the Gysin
pullback ¢f is the same as the usual pullback 5* By Lemma 5.1, the variety Z7, is a principal
G,-bundle of C;f (v, w). Thus,

dim Z¢ = dim G, + dim C}f (v, w) = dim G, + dim M(v — ey, 102) + dim M (v, w)

2dimRep(Q, v — e, w) — 2dim G, —¢, + 2dim Rep(Q, v, w) — 2dim G,
2
= dimRep(Q, v — e, w) — dim G,—,, + dim Rep(Q, v, w)

=w-(v—er) +Agv—er) - (v—er) —(v—ep) (v—er) +w- v+ Agu-v;
dim7T*X = 2dim(G xp Y) = 2(dim(G,/P) + dim Rep(Q, v — ej, w) + dim Rep(Q, ex))
= 2(dim(G,/P) + dim Rep(Q, v — e, w)) + 2dim Rep(Q, ex);

=dim G, +

dim(G X p (1, e, 10(0)” X pg,} (0)) = dim(Gy /P) + dim g1, L, ,(0)*® + dim g, (0)
= dim(G,/P) +2dim Rep(Q, v — e, w) — dim G,,_,, + 2dim Rep(Q, ex);

dim Z = dim G, /P + 2(Rep(Q,v — e;) + Ager - v) +w - (v —ex) +w - v
=dimG,/P+2(Ag(v —e) - (v —ex) + Ager-v) +w - (v —ep) +w - v.
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Therefore,
dim Z — dim Zg = dim(G,/P) + dim Gy, = dimT*X — dim (G x p (u; e, ,(0)* x p;1(0))).
Hence we have
dim(T*X*®) + dim(Z&) = dim (G xp (,u;_lehw(())ss X ,ue_kl(O))) + dim Z°.
Thus, Lemma 1.6(2) yields ¢* o g. = ¢, o ¢ . Therefore, for o € Ag,x7(M(v — e, w)),

(2" (a) = 0,6 (M) @ a),

here 5* is the usual pullback. Here to distinguish the vertex k € I and the power [ € N, we write
(k) for the label k € I.
The isomorphism Z¢ /G, = C;f (v, w) follows from Lemma 5.1. It induces an isomorphism

AGxrxG,(Z° N Za) = Arxa, (CF (v, w)).

The isomorphism maps ¢ ((2(7) ®@a) to (c1 (L)) @pf(a), for any I. The pullback of the line bundle
Ly, on Z¢, is the trivial bundle with fiber V (v, w)/V (v—ej, w). It carries a natural G, = G, action.
The element 2(*) can be interpreted as 2F) = ¢;(V (v, w)/V (v — ey, w)) € Ag, xr(pg'(0)). Thus,
@ () = ¢1(Ly,) under the isomorphism.
The claim follows now from the definitions of the two actions ¥ and ®. O
5.4. Extended CoHA. For later use, we will consider some modifications of P.
Assumption 5.7. Assume the action of T = G2 on T* Rep(Q,v) satisfies one of the following:
Case 1: m(h) = m(h*) =1, for any h € H;
Case 2: The T-action is the one defined in Remark 3.2.
Note that Assumption 3.1 is satisfied in either case above.
Let (R, F) be the formal group law of A. Define APY := Symp(©ierde,, (pt)) be the symmetric
algebra of ®erAg., (pt). Let

Dy(z) = S (@hye € APOL]
r>0

be the generating series of generators (u(k))r e ApY.
Recall that a;x is the number of arrows in H from ¢ to k. Let ¢;p = —ay —ag; if k £ 4, 2 if k = 4.
We define a AP° action on 4P as follows. For any g € P,,,

D (2)g®p(2) " i= gPpy(z,0),

where

fio= T1 115 1

ien\{k} j=1 ( 2)“““(2 F)\( +rt)i 55 (2 — F)\( —rt1 —F t2)

z—F)\ t1)%k (2 F)\( —p tg) % Z—F)\()+Ftl+Ft2)

when the T-action satisfies Assumptlon 7(1); and

,UZ

BN Q)
<I>kzv ::HH(Z F)\] r ()

iel j=1 (z—rF /\(Z F(cri)F

)
)

when the T-action satisfies Assumption 5.7(2). Note that the element o, k(z,v) liesin Agr, x7(pt)[z
in both cases.

mlw l\Dl;ﬁ‘

_1]]
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Lemma 5.8. (1) The action of AP° on AP is well-defined.
(2) Furthermore, for any k € I, ®y, acts on P by an algebra homomorphism.
(8) The subalgebra P* C P is a P°-submodule.

Proof. (1) follows from the fact that C/D\i(z, v) is symmetric. (2) follows from the projection formula

and the equality &)\i(z,vl) -</I>\i(z,v2) = </I>\Z-(z,v1 + v2). (3) is clear. O
Definition 5.9. Define the extended preprojective CoHA associated to A and @ to be the algebra
Ape = AP0 AP The spherical subalgebra in the extended CoHA is AP%¢ = AP0 i Aps,

Similarly, there is an action of 4P? on ASH by algebra homomorphism. We define the extension
of shuffle algebra ASH¢ := AP% x ASH. As a direct consequence of Proposition 4.3, we have the
following.

Proposition 5.10. There is an algebra homomorphism AP — SHE, which becomes an isomor-
phism after localization.

5.5. Action on quiver varieties. We are still under the condition that () has no edge-loops. For
any G-variety X and a G-equivariant rank-n vector bundle V', let A_;/.(V) € Ag(X)[z] be the
equivariant Chern polynomial [[" (2 —p x;) where {z1,--- ,2,} are the Chern roots of V. Note
that for any element ¢ in Kg(X), the Grothendieck ring of G-equivariant vector bundles on X,
A_1/2(§) is well-defined.

Recall that M (v, w) := py 1,(0)% /G, is the quiver variety. Let Vj, := i, %, (0)%% x g, Vi (resp. W)
be the k-th tautological bundle (resp. the trivial Wi-bundle) on 9(v, w) respectively. Consider
the following tautological element in KT (9 (v, w)).

-1 —1 -1
W — (1 V in(h) =k} Vou .
oW = (L (@)™ V) Ha 1 Z{heH‘m(h)_k} ‘™ under Assumption 5.7(1);

Fr(v,w) = 43 D {heHlout(h)=k} Vin(h)
T Wi— 1 +q )V +qt Zl:k#[—ckl]qvl under Assumption 5.7(2).
where [n], = £=%2_. This is a modification of | , (2.9.1)] according to T-action. When

q—q~
t1 # to, the T action is given by (tl,tg)(Bh, Bh*,i,j) = (tlBh,tQBh*,tli,tQj).
The following lemma can be proved by straightforward calculation. In particular, (2) is proved
in [ , § 10.1].
Lemma 5.11. (1) Under Assumption 5.7(1), we have
Fr(v1 + e, w) — q1q2Fp(v1 + €5, w) — Fr(vi, w) + q1qaFe (v, w) =

(192 — (q1g2) 1)L, if k=1,
{ (7' = @)aiwli + (g5 — q)aniLi,  ifk #£i
(2) Under Assumption 5.7(2), we have
Fi(v1 4 es,w) — ¢ Fi(v1 + e, w) — Fr(v1,w) + ¢*Fr(v, w) = (¢ — g~ %)L,
We define a P’-action on M(w) by
A1/z(Fr(v,w))
A1/ (1@ Fk (v, w))

Dp(z) -m =

for any m € M(v,w).

Proposition 5.12. For any w € NI, the action of P and P° on M(w) can be extended to the
action of P* =P x P on M(w).
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Proof. By the same argument as in [ , §10.4], it suffices to show

i(2)9@x ()} () = gBx(2,v)(m),
for any m € M(vy,w), and the simple roots v = ¢;, i € I. In this case, g = g(2)) € Ap(pt)[2?].
By Theorem 5.6, the action of g(2(Y) on M(w) is given by convolution with g(c1(£;)), where £; is the
tautological line bundle on Hecke correspondence C;" (v1+e;,w). The action of ®y(2)20 @y (2) =1 (m)
is then given by
(A A1z (Fr(v1 + e, w))
A_1/:(1q2Fk(v1 + i, w))

)

oo ey
—1/:(q1q2F (v, w))
A1)z (Fr(v1 + e, w)) >\—1/z(Q1quk(vlaw)))
*)‘—I/Z(Q1Q2fk(vl +ei7w)) )‘—l/z(fk(vlvw))
where the equality is obtained by projection formula.
Under Assumption 5.7(1), by Lemma 5.11(1), the action of ®(2)z)®(2)~!(m) coincides with
the action of z(i)@(z el) where

=*c1(L;) - (A

k)

(@) a; () )a vk
Z—F)\ —Ft1) ““(Z—F)\ —F tg) % z—F)\ +Ft1 +r t2)
Pu(z0) = ]I H @ @ H :
ik jo1 (2 —F A R t2)tn(z —p XY pt) % G5 (2~ /\ ) —pti—p o)
Similarly, the claim holds in the case under Assumption 5.7(2), by Lemma 5.11(1). O

5.6. Twisting the preprojective CoHA. The spherical subalgebra of the preprojective CoHA
per se is not directly related to affine quantum groups, albeit a modified version is. The modification
involves a twisting the multiplication of the preprojective CoHA by a sign which involves the Euler-
Ringel form of ). The same sign twist is also present in many places when constructing quantum

groups via quiver representations, e. g., | , , ]. Here again we assume @ has no
edge-loops. L
Asin [ |, we define the adjacency matrices AD and AD as

(AD)y; := #{h € H | in(h) = k,out(h) = l},

(AD)y; := #{h € H°® | in(h) = k,out(h) = 1}.
Thus, (AD)! = AD. We define the matrices C,C as
(13) C:=1-AD,C :=1—- AD.

Let muy, vy @ Poy @ Poy — Py 40, be the multiplication defined in § 4.
Definition 5.13. The twisted preprojective CoHA, denoted by 75, is P = @D, P, as N/-graded
R[t1,t2]-module, endowed with the multiplication 7, 4,
gy 0 1= (—1) @O0+

where (-, -) is the standard inner product on k.
Lemma 5.14. The multiplication my, ., is associative.

Proof. This follows from the associativity of m”:

ﬁ%l-l—m,vs (mvhvz (:Elv :E?)’ 333) :(_1)(1)3’0(”1—“)2))—’_1 (_1)(v2’cvl)+lmvp1+v2,v3 (mvp1,v2 (331’ 332), $3)

:(_1)(vz-i-v:z,Cm)-Irl(_1)(1)37Cv2)—|rlmz)31m_ﬂ)3 (21, mz}zm (22, 73))

:"%vl,vg-i-vg (:Ela ﬁl’vz,vg (IIJ‘Q, IIJ‘3))
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Similarly, we define SH to be SH as NI -graded R-module, with multiplication given by

mm,vz = (_1)(1)2,51)1)—1—1

where my, 4, is the multiplication of SH.
For any w € N! we define the map, for each vy, vy € N/,

51,171,2 = (_1)(122,601)4—1@1,1,@2 s M(v,w) ® ']51,2 — M(v1 + v, w).

Moy ,v25

Lemma 5.15. Notations are as above.
(1) There is a well-defined algebra homomorphism P — SH.
(2) The maps ay, v, define an action of P on M(w).

As in the untwisted case, we write a, : Py = @, eyt Hom(M(v1, w), M(v1 + v, w)).
Recall that P, := A(;%X;r(ue_k1 (0)) = Ag,, x7(pt) = Ap(pt)[2*¥]. By Theorem 5.6, the action
of (2! € P,, C P on the Nakajima quiver varieties M(w) := @D, M(v,w) is by

(14) e (0N = 37 (=1) T (e (L)) ',

where L}, is the tautological line bundle on the Hecke correspondence C]j (v, w), and * is convolution
action.

We define the spherical subalgebra of P, denoted by P®, to be the subalgebra generated by P, ,
for k € 1.

Remark 5.16. The image of P*¢ in SH¢ is a deformation of U (bg[u]) € U(gglu]) associated to
the formal group law of the OCT A. In the case when A = CH, Theorem 8.3 below shows that
this deformation is the same as the Borel of the Yangian. When A = K, according to Grojnowski’s
work in progress [ |, this deformation is expected to be the Borel of the quantum loop algebra.

6. EXAMPLES RELATED TO LUSZTIG’S CONJECTURE

To convince the readers that affine quantum groups associated to formal group laws other than
additive and multiplicative ones are equally interesting, we provide examples, one of which is related
Lusztig’s reformulated conjecture of modular representations of Lie algebras. Although in most of
the present paper we work with representations of ) over an arbitrary field (see § 1.1 and § 2.1),
in this section we assume the base field k of quiver representations has characteristic zero, due the
reference to many properties of the algebraic cobordism theory of | ] that require the existence
of resolution of singularities.

Example 6.1. When A comes from the Eilenberg-MacLane spectrum HZ/p, this construction
yields Yangians over [F),, the representation theory of which is richer than the modular representa-
tions of Lie algebras.

Example 6.2. When A is the connective K-theory, this gives a geometric interpretation of Drin-
feld’s degeneration of quantum loop algebra to the Yangian (see also, | , Example 3.9]).

Example 6.3. Recall that the formal group law associated to the algebraic cobordism of Levine-
Morel | | is the universal formal group law over the Lazard ring Laz. There are some properties
of 1##P which have no direct analogue in the Yangian or quantum loop algebra cases.

Recall that Lazq is dual to the ring of symmetric polynomials Ag, where the duality pairing is
given by the integral of the Chern class on manifolds. Let H be the Heisenberg algebra, which is a
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quantum double of Ag. As vector spaces, we have the isomorphism H = Lazg ®Ag. Furthermore,
there is an algebra embedding Lazg < H. The duality between Lazg and Ag induces a Q-linear
map La#ps ®g Ag — Yh+(gQ). However, this map does not respect algebra structures on any of
the three algebras 4#P* Ag, or Yﬁ+(gQ). Nevertheless, there is a non-standard quantum double
of 1P without direct analogue for the previously known affine quantum groups. Namely, base
changing the 1#*P* to H via the embedding Lazg < H, and extending by scalars the multiplication
formulas in § 4.1 (while H commutes with the equivariant parameters), we get an algebra H7P*.
This algebra has H embedded, and is isomorphic as Lazg-modules to Lazps R Lazps

Another example of interest is the case when A is the Morava K-theory. ° Assume Q is of
finite type. In | |, in a reformulation of his conjecture from 1979 on modular representation of
algebraic groups, for each prime p, Lusztig wrote down a family of character formulas, parameterized
by an integer n. For each integral dominant weight A, Lusztig’s formula is denoted by EY. It has
the following properties:

(1) EY coincides with the Weyl character formula;

(2) E} is the character of irreducible representations of Uy, (g) at a p-th root of unity;

(3) for each fixed A, EY stabilizes for large enough n; in this range EY is conjectured to be the
character of irreducible representations the simply-connected algebraic group G with root
system () over F_p.

When p is larger than a number depending only on @, Lusztig proved property (3), based on earlier
work of Anderson-Jantzen-Soergel [ | and Steinberg | |. However, the formulas for general
n # 0 which are not in the stabilizing range open the question, proposed in | |: find a family of
quantum groups, parameterized by a prime p and an integer n € N, whose character of irreducible
module of highest weight X is given by EY.

Recall that Morava K-theory, denoted by Kpn, is an oriented cohomology theory associated to
each prime p and non-negative integer n. The constructions in § 4.1 and 5.2 give an algebra X»"P as
well as its action on quiver varieties. It should be possible to obtain a purely algebraic description
of this algebra along the lines of shuffle formula in § 3, although at the present the formula stated
in § 3 requires the coefficient ring of the formal group law to be a Q-algebra. Let Uy(n)™ be
the subalgebra generated by the constant loops. That is, the subalgebra of X»"P generated by
lge, € KpnGLy,, x G (,u,;ell(O)) for all K € N and i € I. We expect the comultiplication on the shuffle

algebra constructed in [ | has a geometric description, hence is well-defined on U,(n)™, the
Drinfeld double of which is denoted by U,(n) := D(¥»"U,(n)*).
Note that at present the construction of finite quantum group of Lusztig | | using perverse

sheaves has no analogue for Morava K-theory, hence the only available construction is taking the
finite part inside the quantum affine algebra.

Now we provide some evidence that this family of algebras is related to the family proposed by
Lusztig.

(1) For n = 0, the Morava K-theory is the Chow group with rational coefficients. Theorem 8.3
below shows that Kr"P 22 YV, *(g). In [ ] we further prove that D(5»"P) = Y} (g). It is
known that the subalgebra of Y};(g) generated by constant loops is the universal enveloping
algebra U(gg), the characters of absolutely irreducible modules of which are given by E?\.

(2) In Proposition 6.4, we prove that the characters of the absolutely irreducible representations
of Up(n) with highest weight A stabilize, if p™ is larger than a constant depending on .

3The possibility that Lusztig’s reformulated conjecture is related to our construction in Morava K-theory is kindly
suggested to us by David Ben-Zvi and Ivan Mirkovié.
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(3) In the limit case n = oo, Kpn is given by the Eilenberg-MacLane spectrum HZ/p, the
corresponding cohomology theory is the Chow group with Z-coefficients. Similar construc-
tion as in Theorem 8.3 using Chow group with Z-coefficients in lieu of Q-coefficients gives
a Z-form of U(gg). An easy calculation shows that this Z-form is the Kostant Z-form,
which by definition is generated by the divided powers of the Chevalley generators. That
is, let 1, € CHGLEZ. XGm(u;l(O),Z) be denoted by E; for ¢ € I, then Efk = k!li, where

lge, € CHGLkei x G (,u,;eli(O), Z). In other words, 1, is the divided power operator EZ-(k)
the Kostant Z-form. For large enough p, it is reasonable to expect that U, (oco) is isomorphic
to the reduction mod-p of the Kostant Z-form (referred to as the hyperalgebra in literature),
whose characters are known to be the same as those of the algebraic group | |, which
in turn are given by ES° according to [ ].

(4) For n = 1, the Morava K-theory has an alternative description in terms of the usual K-
theory. According to Grojnowski’s work in progress [ ], BP is expected to be the
positive part of the quantum loop algebra, the subalgebra of which generated by constant
loops is a Z-form of the finite quantum group U,(gg). Similar to (3) above, for suitable
choice of 1-dimensional subgroup of GL, x Gy, this integral form has g-divided powers.
Specializing ¢ of this Z-form at a pth root of unity, the irreducible modules would have the
same character as given by the formula E/l\ However, to obtain the first Morava K-theory
from the usual K-theory, instead of specializing ¢ at a pth root of unity, one needs to take
the invariant of the K-theory spectrum under the action of the group of (p — 1)-th roots of
unity j,—1 via Adams operations. The precise relation between these two manipulations is
unknown to us at present.

in

We expect the irreducible representation of Up,(n) over E) with highest weight A factors through
the convolution algebra of fixed points K,n(Z(w)“), where Z(w) is the Hecke correspondence in
quiver variety for w € NI depending only on ), and G C GL,, X Gy,.

Proposition 6.4. * Let X be a smooth quasi-projective variety with Z C X x X a convolution
subvariety. If p" —1 > 4dim X + 1, then the convolution algebra K,n(Z) is isomorphic to the
convolution algebra CH(Z,Z/p) @7y, Z/plvT].

To prove this proposition, we will use the slice spectral sequence | ] which we now recall.
Let K,n be the motivic P!-spectrum representing Kpyn. That is, there is a bi-graded oriented co-
homology theory B, ,,,cz Kpn®™(A) for any Plspectrum A with K,n®™(A) = H"™(A, Kyn(m)),
where (m) is smashing with G,,""™. Restricting to the case when A is a smooth variety and s = 2m
part gives the oriented cohomology K,n*(A) = @,,cy Kpn*™™(A). The oriented Borel-Moore

homology theory K,n(A) for not necessarily smooth variety A is obtained as in | , § 4]. Recall
that the coefficient ring of Kpn is Z/p[v¥] with v in degree p™ — 1. Hence, the slices of K,n are:
I(pn—1 . n
(15) sg(KCyn) = { E]P(f )HZ/p®(vl-Z/p), ifg=1(p" — 1) for some | € Z ;
zero otherwise.

Below we denote s,(KC,n) simply by s,. The slice spectral sequence for any Pl-spectrum A and
weight N € Z has

BT = H'"™ (A, s_o(N — q)) = KtV (4),
with the r-th differential

(16) dff’q’N : Eff’q N Ef}'i‘hq—r—i-l

4The proof presented here was suggested to us by Marc Levine.
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for 7 > 2. The source is a subquotient of H"~9(A,s_,(N — q)) and the target is a subquotient of
Hh=a+2=1(A s, 1(N — g +r —1)). Recall the following result on higher Chow groups which
can be found in | , Vanishing Theorem 3.6 and 19.3].

Theorem 6.5. The higher Chow group CH™'(A,Z/p) = H?*" (A, HZ/p(m)) vanishes, when
m>dim A+ ore<O0.

Assuming for the moment A is smooth, we are primarily interested in K,n*"™(A) in the case
when s = 2m, 2m — 1.

Lemma 6.6. Assume A is a smooth quasi-projective variety with dim A < p™ — 2. Then,
(1) d2m9™ = 0 and 2™ 9™ = 0; In particular,

Kpn®™™(A) 2 of CH™®"~D(A, 2 /p),

where | € 7 is the unique integer so that 0 < m —I(p" — 1) < dim A < p™ — 1 if there is,
and zero otherwise.
(2) Similarly, I eem — (o gnd @22 = 0; In particular,

Kyn?m=lm(4) 2 of CH 10" D14, 7,/p),

where | € Z is the unique integer so that 0 < m —I(p" — 1) < dim A+ 1 < p™ — 1 if there
18, and zero otherwise.

Proof. In (16), taking N = m and h + ¢ = 2m, the target of the differential PN s subquotient
of Hh=a+2r=1(A s, . 1(N — ¢+ r — 1)), which is in homological degree 2(m — q + 7 — 1) + 1,
which is one more than twice the weight m — ¢ 4+ r — 1, hence vanishes by Theorem 6.5. Therefore,
dZmTP™ — () e, there is no differential from the part converging to Kpn*mm(7).

Now in (16), taking N = m and h+ g+ 1 = 2m, the slices (15) are non-trivial only if ¢ —r+1 =
I(p" — 1) for some [ and g = I'(p™ — 1) for some I, in which case

H" (A s g1 (N—gtr=1)) = H 00N (A, HZ /p(m—1(p" 1)) = CH"'@"~D(4,Z/p)

and H'"9(A,s_4(N —q)) = CHm_l/(pn_l)’l(A,Z/p), a higher Chow group. By Theorem 6.5, these
two Chow groups vanish unless 0 < m —I(p" — 1) < dimA < p" —1land 0 < m—1U'(p" —1) <
dimA + 1 < p" — 1, which forces | = I’. This contradicts with the fact that » > 2. Therefore,
d%m_q_l’q’m = 0, i.e., there is no differential to the part converging to Kpnzm’m(A). Now we have

shown (1).
The same argument with vanishing of the first and second higher Chow groups yields the van-
ishing of differentials to or from the part converging to K,n?m=5m(A). O

The following is a corollary to Lemma 6.6.

Lemma 6.7. Assume A is a quasi-projective variety, mot mecessarily smooth, embedded into a
smooth variety M. If dim M < p™ — 2, then Lemma 6.6(1) holds for A.

Proof. As A naturally embeds into a smooth variety M with open complement U, we have the
localization exact sequence

oo HPNUHZ p(m)) — H™(M /U, HZ/p(m)) — H*™(M, HZ/p(m)) — - - - .

Lemma 6.6 applied to M and U implies the vanishing of all possible differentials in the slice spectral
sequence converging to Kpnzm’m(M /U), which, by definition, is the Borel-Moore homology K,n
applied to A (| , § 4]). This proves Lemma 6.6(1) for A in this case. O
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Proof of Proposition 6.4. Note that Z C X x X and dim(X x X) < p”—2. Hence Lemma 6.7 implies
Kyn(Z) = CH(Z,Z/p)[v*] as abelian groups. Let W = p,'Z Npyy Z € X3, then Z x Z C X*
and W C X? both satisfy conditions in Lemma 6.7, hence K,n(Z x Z) = CH(Z x Z,Z/p)[v*] and
Kyn(W) = CH(W, Z/p)[v¥], which is compatible with restriction with support.

It suffices to show that the push-forward K,n(W) — K,n(Z) is compatible with the push-forward
CH(W,Z/p)[v*] — CH(Z,Z/p)[v*] under the isomorphisms above. This can be proven through
the degree formula | , Theorem 4.4.7]. Any homogeneous element v € K,n(WW) is a Chow
cycle shifted by a power of v, according to Lemma 6.7. Without loss of generality, we may assume
7 is a Chow cycle of degree-m. Hence « lies in Q(W) ®Laz Z/p[v] € QW) @Laz Z/plvE] & Kn(W).
Choosing any pre-image 7 in Q(W), [ , Theorem 4.4.7] yields that ¥ = > a;y; where
a; € Laz; and ~; are cobordism cycles on W which are birational to their images in W. In
particular, dim~y; < dimW < 4dim X < p™ — 1. In particular, the image of a; in Z/p[v] is zero
unless ¢ = 0, and agyp is the Chow cycle corresponding to v in the following diagram

QW) —— Kpn(W)

T~

CH(W,Z/p)

with the vertical map being an isomorphism in degree-m piece by Lemma 6.7. As this diagram is
compatible with pushing-forward to Z in the three homology theories involved, we are done. [

As the characters of the irreducible modules of U,(0) are given by EY and those of Up(cc) are
given by ES°, it is natural to expect that those of U,(n) would be be given by EY. However, the
cases n = 0 and n = oo studied in the present paper does not provide an indication of the right
specialization of the loop and quantization parameters in order to get EY. Further investigations on
the irreducible representations of this family of algebras will be carried out in future publications.

7. YANGIANS AND SHUFFLE ALGEBRAS

From this point on we have several miscellaneous sections. For any quiver ) without edge-loops,
and A is the Chow group with Q-coefficients, in this section, we show there is a map from the
Yangian to the (twisted) shuffle algebra. This map will be further studied in § 8.

Throughout this section, we assume the quiver ) has no edge-loops. We assume the T-action
has the same weights as in Remark 3.2.

7.1. The Yangian. Let gg be the symmetric Kac-Moody Lie algebra associated to the quiver Q.
The Cartan matrix of gg is C + C = (cki)k,er, which is a symmetric matrix. Recall that the
Yangian of gg, denoted by Y;(gq), is an associative algebra over Q[i], generated by the variables

Typr birs (k€ I,r €N),

subject to certain relations. Let Yh+(gQ) be the algebra generated by the elements xle, for k €
I,r € N. Define the generating series z; (u) € Y; (go)[u™"] by =i (u) = R >0 z; w1 The
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following is a complete set of relations defining Y, (gg):

hegy heyy

(Y1) (u—v— T)xlj(u):nf'(v) =(u—v+ T):Ef’(v)x;(u)
+ h([:ng’o,x;r(v)] - [:Eg(u),xfjo]),for any k,l € I.
(Y2) Z [‘/E;:(ua(l))v [xz_(ua@))’ [ T [ZE;(UU(I—CM))’ l’?_(v)] T m =0,for k 7£ lel

UEGI*CM

7.2. The map from Yangian to the shuffle algebra. In this subsection, we assume (R, F)) is
the additive formal group law. We prove the following.

Theorem 7.1. Let (R, F) be the additive formal group law. Let Q be any quiver without edge
loops. The assignment

Vi (ag) 2 o, (A € SHe, = Rlt1, 1] [AP)]
extends to a well-defined algebra homomorphism Y;' (gg) — :S’\?-/l|t1:t2:h.

Here recall that SH is the shuffle algebra twisted by a sign coming from the Euler-Ringel form
(see § 5.6). In order to prove Theorem 7.1, we need to verify the relations (Y1) and (Y2) in the

algebra SH. It will take the rest of § 7.2. -
For simplicity, we write the multiplication in SH as *.

7.2.1. The quadratic relation (Y1). We now check the relation (Y1) in the shuffle algebra. We have
h
u— k)’

i (u) = By (AWt =

r>0

where the equality is understood in the usual sense. To check the quadratic relation (Y1), it suffices
to show

heg h h hey h h
a7 =) S m w0 T o®
h h h h
_ (k) _ (k) _ "™ ) @
h(l *v—)\(l) 0 %1 0 * 1% +1 *u—)\(k))'

We first consider the case when k # [. We first spell out the formula of the multiplication
ﬁek ® SHe, — SHeyre, as a map R[A|AP] @ R[A[AD] — R[AIAF), AD]. Plugging-in v; = ey,
and ve = ¢; to (2), we have fac; = 1. For simplicity, we write a = —cy;, the number of arrows from
the vertex k to the vertex [. Let S be the set of integers {a,a—2,a—4,...,—a+4,—a+2}. By the
running assumption of this section, the 2-dimensional torus 7" acts on T* Rep(Q,v) as in Remark
3.2; in particular, the set S is the set of weights of T-action on arrows from the vertex k to the
vertex [. Plugging the weights into (3), we have facy = Hmes()‘(l) — k) 4 m%) Therefore, by the
shuffle formula (4), the Hall multiplication, taken into account of the sign twist of § 5.6, is given by

h
D)2 4 (ADYT = —(A®PO) TT A0 — A® 4"
(A AD)7 = BP0 TT A0 = A® 4 m ).

meS
Similarly, the multiplication gﬁel & gﬁek — @ek%l is given by
ADYP 5 (AF)) =(—1)2 T (AD)P(AR)ya H (AR — O 4 mg) = —(AD)p(AR))a H A —\®)

meS meS
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Plugging into equation (17), (Y1) becomes the following identity

thl h h 0 (k) h
e BT\ P\ EIS(A — AT A my)
thl h h () (k) h
s 1 L0 A -
h h h h
Y L 0 _ (k) S % @ _ Nk _ =
(18) _h(v_)\(l) [TOO =28 4 m3) - = A0 = A® —m3)
mesS mes
h h h h
" ) _ \(k) Oy 0 _\®) _ 0
w—A() gg“ AT M)+ T® };[S(A A —mg)).
Canceling the common factor
H (AW — ) mg), where S’ = {a — 2,a — 4,...,—a + 2},
mes’
the equality (18) becomes
(u_w@) AD —A®) 4 gl _(u_v_@) AD —\®B) — ol _ah< 11 )
27 (u— A0 (v — AD) 27 (= 2A0)(u—A®) TNy = XO oy — AR/

Both sides of the above identity are equal to ah%. This shows the relation (Y1) for
the case when k # .

We now check the relation (Y1) when k£ = 1. A similar calculation using the shuffle formula (4)
shows that equation (17) becomes the following identity in SHa., = R[A][A1, A2]

B h A=t b h M- hth
(U_U_h)za(u—)\lv—)\z X2 — A1 >_(“_”+h)za<v—A1u—Az A2 = Ay )

ceG2 0€Gy
h h h h A — X+ h
O op (PO )
ZJ( 1)—)\2 ’U—)\l u—)\1+u—)\2 )\2—)\1 )
geG2
It is straightforward to show that both sides of the above identity can be simplified to
2h3 ( LS S S >
)\2—)\1 1)—)\2 ’U—)\l u—)\l u—)\g ’

This completes the proof of relation (Y1) for k = [.

7.2.2. The Serre relation (Y2). An argument similar to | , § 10.4] shows that to check the
relation (Y2), it suffices to check:

1_Ckl 1 —ec
(Y2) Z (—1)p< » kl)xz% * 70 * xz%_c’“_p) =0,

p=0

where ™" = z % x * - - - % x, the shuffle product of n-copies of x. We use the shuffle formula (4) to
check the Serre relation (Y2').
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For any 14,7, let A\; j = A; — Aj. By the shuffle formula (4), we have the recurrence relation

(o)™ = 1SS (o) [[ 2

0€Sh(p,1) i=1 n+1,7

Therefore, inductively, we get a formula of (zo)*"

k) (k) )\( ) B
*n_ n(n+1) 1 12 +h )\ +h n1n+
(19) (24,0)™" = >0 ( A(k) NG '
oeG, 31 n,n—1

Note that k& # [. By the shuffle formula (4), the multiplication g’ﬂnek ® g’ﬁel — :S'%neﬁel is
given by

- h
(20) (21,0)™ * 210 = —(Tr,0)™" H H (A — /\Ek) +m=),

. 2
i=1meS

where S ={a,a —2,a—4,...,—a+4,—-a+2}.
For the multiplication S’Hpe,ﬁel ® Squk — S?—lel+(p+q)ek, considered as a map

Rlty, ) A, A AT @ Rlty ) M) = Rl )N D),

we have
(21,0)™F * m10) * (w8,0)" = (—1)pq+qa+1 Z U((l’k,o)*p * 210 (Th,0)™
O’ESh(p )
p ptq )\(k )\(k) +h pt+q

(21) 111 T TTO8 20 +md).

ERCIERNCE
s=1t=p+1 )‘ — As t=p+1meS

Plugging the formulas of (19) (20) into (21) with ¢ = a + 1 — p, we get

(k
:Ekp * I * $k(0+1 p) _ (—1) (aﬂ)z(a”) Z << Z H )\ + h)

)\(k
TESh(p at1-p) €S, 1<i<j<p

(Y « T /\(’“)+h><ﬁ‘ﬁA(’“ +h>

11 A
0€6at1-p {p+1<i<j<a+1} 7,0 s=1t=p+1 t,s
) BT ® h
L ([T -3 =) T =20 4mb))
mes i=1 t=p+1

Re-arranging the above summation, we have:

a+1

a+1 ' '
S (et S () £ (I Mt

k
p 0€6a41  1<i<j<at+l AU( j),0(4)

S TR UG = AP RN
11 (,H( oty ~ A =mz) 11 Oy - *m?))’
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Note that the factor

To® 0 B TT 00 0 TTo® o h
H (H()\U(l) — A= mg) H ()\o(t) = A ) H H )\ —A 2)’
mesS’ =1 t=p+1 meS’ i=1
is independent of o € S,11, hence a common factor. Here again S' = {a — 2,a — 4,...,—a + 2}.

Let )\;(k) = )\Z(k) — A, After canceling the above common factor, to show the Serre relation (Y2'),
it suffices to show

a+1 P a+1 (k)
(22) E (—1)p< » ) E o | |()\§ ) — o ) I | (A 5 ) ' ” Q) =0
p=0 c€6q41 s=1 t=p+1 1<i<j<a+1 3,0

The identity (22) is proved in Appendix, Corollary A.2. As a consequence, the map Yh+(g) —
SH|t,=t,=h respects the Serre relation (Y2).

In Theorem A.1, we have a more general identity of symmetric functions, which deforms the
identify (22). It might be interesting on its own rights. Therefore, we prove it in Appendix A and
deduce (22) from it.

8. COMPARISON WITH YANGIAN ACTIONS ON QUIVER VARIETIES

In this section, we show that the (twisted) spherical subalgebra P*¢ of preprojective CoHA
defined in § 4 specializes to the Borel of the Yangian when A is the intersection theory. Again we
assume @ is a quiver without edge-loops, and the T-action has the same weights as in Remark 3.2.

Now we take the oriented Borel-Moore homology theory to be the intersection theory CH.
Recall that Varagnolo in | | constructed representations of the Yangians using quiver vari-
ety. It is proved that, for each w € N/, there is an algebra homomorphism a” : Yi(g) —
End(CHg,, xG,, (M(w))). The action of generator x:;r is given by

. Z e’“’cw A (e1(Lr))" € CHg,, x1(Z(w)) = End(M(w)),

where
AT O (vg,w) = Z(vy — eg, v2,w)
is the natural embedding of the irreducible component.
Observe that according to the projection formula and (14), we have ay(:ztz:r) = Zi((z(k))l) €
End(M(w)).
Assume the quiver @Q is ADE type. For w € N!, we call the action map Y;(g) — End(M(w))
aY to emphasize the dependence on w.

Lemma 8.1. ° With notations as above, we have (), ker(a},) = 0.

Proof. In | ], Nakajima proved that for any wy,ws € N’ the kernel of the map Yj(g) —
End(./\/l(wl) ® M(ws)) is contained in the kernel of aY, for some w’ € NI. Therefore, the ideal
N, ker(al)) is a Q[R]-flat Hopf ideal in Y;(g). By | , Proposition A.8], if @ is of finite Dynkin
type, there is no non-trivial such ideal in Yy(g). Therefore, ), ker(a},) = 0. O

The following is a direct consequence of Lemma 8.1.

5We thank Sachin Gautam for explaining to us the proof of | , Proposition A.8].
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Corollary 8.2. Assume Q is a quiver of ADE type. The assignment (z()! — x,jl, ti,to — h/2

extends to a well-defined surjective algebra homomorphism Y : CHps _, Y;(g). Moreover, the
following diagram commutes

CHﬁs —6> End(CHGw XGm (i)ﬁ(w)))

| far

Y (9) = Ya(0).
For an ADE type quiver (), summarizing Lemma 5.15, Theorem 7.1, and Corollary 8.2, we have
a commutative diagram of algebras

CHﬁS — ‘/S‘\/]_/[|t1:t2=ﬁ/2

i

Yh+ (9)

For any z €“H 735\2‘/1:152:,?,//2 such that Y'(x) = 0, then z lies in the kernel of the map CHﬁs,tl:ch/z —
gﬁs]tlztzzh /2. We know this map is an isomorphism after localization in the sense of Remark 4.4.
Therefore, = is a torsion element in CHﬁsltlztzzh /2

Define CHE to be the quotient of CHﬁsltlthhp by the torsion part in the same sense as in
Remark 4.4.

Theorem 8.3. Assume Q) is a quiver of ADE type. We have the following isomorphism
T—l . Y,{r(g) ~ CHE7
such that the diagram
Yh+(9)% Yi(9)

1! J/~ B ayl/
P —> End(CHg,, x¢,, (M(w)))

Y is given by Varagnolo in | .

commutes. Here the action a

APPENDIX A. A SYMMETRIC POLYNOMIAL IDENTITY

Let S(n, b, ) € Q[b, B](A1, ..., An)®" be

S(n,b,h):zZa-(Z ()H)\—bh ) TT 2s+om) 1 ¥>

o€G, p=0 j=p+1 1<i<j<n Je
Here \; j = \; — Aj for any 4, j.
Theorem A.1. (1) The element S(n,b,h) lies in Q[b,h|. In other words, S(n,b,h) does not
depend on the variables {\;,;i =1,...,n}.
(2) We have S(1,b, h) = 2hb, and the recursive formula of S(n,b, h)

n—1

S(n,b,h) = S(n —1,b,h) - (—1)" " 2hn(b — ).

As a direct consequence, we get the following.

Corollary A.2. When b= "1, we have S(n, "T_l, h) = 0. In particular, the identity (22) holds.
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Proof of Theorem A.1. Using the equality:

n n—1 n—1
= <k<n-1.
(k:) <k: >+<k:—1>’ for1<k<n-1
We have

n—1 p n—1 ..
S(n,b,h) = Z o - <Z(_1)p (n; 1> 1—[()\Z — bh) H (Aj + bh) (A, + bR) H Az])\"i" h)
i=1 7

geS, p=0 Jj=p+1 1<i<j<n
n—1 p+1 n
n—1 Xij +h
_ Z o- <(/\1 —bh)Z(—l)i”< ) H(Ai — bh) H (A + bh) H %)
0EG, p=0 p i=2 Jj=p+2 1<i<j<n Jt
Ain + h
- Y . (S(n —Lbn)( +0h) ] - )
o€Sh([1,n-1],n) 1<i<n—1
( Aij +h
- Y o (sta-1hm)n ) ] 7>
o€Sh(1,j2,n) 2<j<n !

1bh(n(>\+bh 11 Aijf’i)—i(w—bh) 11 AJ”"th)).

; L )‘]1 : . . .. )\’Lj
=1 {i:1<i<n,i#j} j=1 {i:1<i<n,i#j}

Here the last equality follows from the induction hypothesis that S(n — 1,b,#) only depends on
n —1,b and h.

It remains to compute the right hand side of (23). Define F(t,b,h) := 3(t + bh) [~ ’\i:t;i'h.
The function F'(t,b, h) has only simple poles at t = A;, for j =1,...,n, and

n

ZRest:,\jF(t,b,h):Z<()\j+bh) 11 M)

A
j=1 j=1 {i1<i<njizj} 7"

By the residue theorem, Z;‘L:I Resi=y,; F'(t,b, h) is equal to

1 = h n = n
—Resp-o F(tb,h) = — Respoo 7(t + bh)il;[l(—l o) =) (nbh+ SN - h<2>>.

i=1
Therefore

n

(24) S(oeom ] Ai%ﬁ):—(—l)"(nthan:)\i—h(Z)).

=1 {i:1<i<n,i#j} i=1
Similarly, we also have

n

(25) S (- ] AJ; h) = (-1~ nbh+ Zn:Ai + h(Z))

j=1 {in<i<nizgy Y i=1
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Plugging the equalities (24) and (25) into (23), we get:

S(n,b, k) =S(n — 1,b, h)< — (—1)"(nbh+ f:A - h<g>) + (—1)"( — nbli+ f:Ai + h<g>>>

i=1 i=1
-1
=S(n — 1,b,h)(—1)™12hn(b — L),
This completes the proof. O
REFERENCES

[AJS94] H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a pth root of unity
and of semisimple groups in characteristic p: independence of p, Astérisque 220 (1994), 321. MR1272539 6
[BHLW17] A. Beliakova, K. Habiro, A. Lauda, and B. Webster, Current algebras and categorified quantum groups,
Journal of the London Mathematical Society, Vol 95, Issue 1, 2017, P 248-276 0.4

[CZZ15] B. Calmes, K. Zainoulline, and C. Zhong, Equivariant oriented cohomology of flag varieties, Documenta
Math. Extra Volume: Alexander S. Merkurjev’s Sixtieth Birthday (2015), 113—-144. 1.1

[CG10] N. Chriss, V. Ginzburg, Representation theory and complex geometry. Reprint of the 1997 edition. Modern
Birkhauser Classics. Birkhduser Boston, Inc., Boston, MA, 2010. x+495 pp. MR2838836 1.3, 5.2

[Dal5] B. Davison, Three-dimensional symplectic geometry, Research Program in Topology of Moduli Spaces and
Representation Theory, Park City Mathematics Institute, (2015). 0.6

[Dr89] V. Drinfeld, Quasi-Hopf algebras. Algebra i Analiz 1 (1989), no. 6, 114-148. MR1047964 1

[EG98] D. Edidin and W. Graham, Fquivariant intersection theory, Invent. Math., 131(3),595-634, (1998).
MR1614555 2

[En00] B. Enriquez, On correlation functions of Drinfeld currents and shuffle algebras, Transform. Groups 5 (2000),
111-120. MR1762114 0, 0.4

[FO97] B. Feigin, A. Odesskii, A family of elliptic algebras. Int. Math. Res. Notices, 1997(11), 531-539. MR 1448336
0.3, 3.3, 3.7

[FT11] B. Feigin and A. Tsymbaliuk, Fquivariant K-theory of Hilbert schemes via shuffle algebra. Kyoto J. Math.
51 (2011), no. 4, 831-854. MR2854154 0, 0.3, 3.7

[Fed94] G. Felder, Elliptic quantum groups. XIth International Congress of Mathematical Physics (Paris, 1994),
211218, Int. Press, Cambridge, MA, 1995. MR1370676 0.5

[Fr68] A. Frohlich, Formal groups, Lecture Notes in Mathematics, No. 74, Springer, Berlin (1968). MR0242837 0.5

[Ful84] W. Fulton, Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 2. Springer-Verlag,
Berlin, 1984. xi+470 pp. MR0732620 0.4

[GTL13] S. Gautam, V. Toledano Laredo, Yangians and quantum loop algebras. Selecta Mathematica 19 (2013) no.
2, 271-336. 0.5, 8, 5

[GTL17] S. Gautam, V. Toledano Laredo, FElliptic quantum groups and their finite—dimensional representations,
preprint, (2017). arXiv:1707.06469 0.5

[Gin06] V. Ginzburg, Calabi- Yau algebras. Preprint, (2006). arXiv:0612139. 0.6

[Gin09] V. Ginzburg, Lectures on Nakajima’s Quiver Varieties. Preprint, (2009). arXiv:0905.0686 5.1

[GKV95] V. Ginzburg, M. Kapranov, and E. Vasserot, Elliptic algebras and equivariant elliptic cohomology, Preprint,
(1995). arXiv:9505012 2, 0.5

[GKM98] M. Goresky, R. Kottwitz, R. MacPherson, Fquivariant cohomology, Koszul duality, and the localization
theorem. Invent. Math. 131 (1998), no. 1, 2583. MR1489894 4.4

[Gr94a] I. Grojnowski, Delocalized equivariant elliptic cohomology, Elliptic cohomology, London Math. Soc. Lecture
Note Ser., 342, Cambridge Univ. Press, (2007), 111-113. MR2330509 0.5

[Gr94b] 1. Grojnowski, Affinizing quantum algebras: From D-modules to K -theory, preprint, (1994). 0.1, 0.5, 5.16, 4

[HM13] J. Heller and J. Malagén-Loépez, Fquivariant algebraic cobordism, J. Reine Angew. Math., 684, 87-112, (2013).
MR3181557 1, 2

[HMSZ14] A. Hoffnung, J. Malagén-Lépez, A. Savage, and K. Zainoulline, Formal Hecke algebras and algebraic
oriented cohomology theories, Selecta Math. (N.S.) 20 (2014), no. 4, 1247-1248. MR3273635 0.5

[Hum?76] J.E. Humphreys, Ordinary and modular representations of Chevalley groups. Lecture Notes in Mathematics
528, Springer-Verlag, Berlin-Heidelberg-New York, (1976) 3

[KR11] A. Kleshchev and A. Ram, Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyn-
don words, Math. Ann. 349 (2011), 943-975. 0.4


http://www.ams.org/mathscinet-getitem?mr=1272539
http://www.ams.org/mathscinet-getitem?mr=2838836
http://www.ams.org/mathscinet-getitem?mr=1047964
http://www.ams.org/mathscinet-getitem?mr=1614555
http://www.ams.org/mathscinet-getitem?mr=1762114
http://www.ams.org/mathscinet-getitem?mr=1448336
http://www.ams.org/mathscinet-getitem?mr=2854154
http://www.ams.org/mathscinet-getitem?mr=1370676
http://www.ams.org/mathscinet-getitem?mr=0242837
http://www.ams.org/mathscinet-getitem?mr=0732620
http://arxiv.org/abs/1707.06469
http://arxiv.org/abs/0612139
http://arxiv.org/abs/0905.0686
http://arxiv.org/abs/9505012
http://www.ams.org/mathscinet-getitem?mr=1489894
http://www.ams.org/mathscinet-getitem?mr=2330509
http://www.ams.org/mathscinet-getitem?mr=3181557 
http://www.ams.org/mathscinet-getitem?mr=3273635

PREPROJECTIVE COHOMOLOGICAL HALL ALGEBRA 43

[KoSoll] M. Kontsevich, Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic
Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), no. 2, 231-352. MR2851153 0.1, 0.6,
2,2.1,2.1,22

[Kr12] A.Krishna, Equivariant cobordism for Torus Actions, Adv. Math. 231 (2012), no. 5, 28582891. MRMR2970468
4.4

[Lec04] B. Leclerc, Dual canonical bases, quantum shuffles and q-characters, Mathematische Zeitschrift 246 (2004),
no. 4, 691-732. 0, 0.4

[Levl5] M. Levine, Motivic Landweber exact theories and their effective covers. Homology Homotopy Appl. 17 (2015),
no. 1, 377-400. 6, 6

[LMO07] M. Levine, F. Morel, Algebraic cobordism theory, Springer, Berlin, 2007. MR2286826 0, 1.1, 3, 1.6, 2.1, 4.1,
6, 6.3, 6

[Lur09] J. Lurie, A survey of elliptic cohomology, Algebraic topology, 219-277, Abel Symp., 4, Springer, Berlin, 2009.
MR2597740 3

[Lus91] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras. J. Amer. Math. Soc. 4 (1991), no.
2, 365-421. MR1088333 0.4, 3.2, 4.1, 6

[Lusl5] G. Lusztig, On the character of certain irreducible modular representations. Represent. Theory 19 (2015),
3-8. MR3316914; Joint Seminar, Mathematical Sciences Research Institute, October 28, 2014. (document), 2, 6,
6, 3

IMVW] C. Mazza, V. Voevodsky, C. Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs,
2. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. 6

[Nak94] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. 76 (1994),
365-416. MR1302318 0, 5.1

[Nak98] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke. Math. J., 91, 1998, 515-560. MR1604167 5.3

[Nak01] H. Nakajima, Quiver varieties and finite dimensional representations of quantum affine algebras, J. Amer.
Math. Soc. 14 (2001), no. 1, 145-238. MR1808477 arXiv:9912158 0, 0, 0.2, 0.4, 0.5, 3.2, 5.3, 5.5, 5.5, 5.6, 7.2.2

[Nak13] H. Nakajima, Quiver varieties and tensor products II ; Symmetries, integrable systems and representations,
403-428, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013. MR3077693 8

[Nel5] A. Negut, Quantum algebras and cyclic quiver varieties, Ph.D. Thesis, Columbia University, (2015). 0, 0.4,
3.3

[RS15] J. Ren and Y. Soibelman, Cohomological Hall algebras, semicanonical bases and Donaldson-Thomas invariants
for 2-dimensional Calabi-Yau categories, Preprint, (2015). arXiv:1508.06068 0.6

[Rin90] C. Ringel, Hall algebras and quantum groups. Invent. Math. 101 (1990), no. 3, 583-591. MR1062796 0, 5.6

[R89] M. Rosso, An analogue of the PBW theorem and the universal R-matriz for Ux(sl(n + 1)), Commun. Math.
Phys. 124 (1989), 307-18. MR1012870 0

[R98] M. Rosso, Quantum groups and quantum shuffles, Invent. math. 133, 399416 (1998). MR1632802 0, 0.4

[SV12] O. Schiffmann, E. Vasserot, Hall algebras of curves, commuting varieties and Langlands duality. Math. Ann.
353 (2012), no. 4, 1399-1451. MR2944034 0.6

[SV13] O. Schiffmann, E. Vasserot, The elliptic Hall algebra and the K-theory of the Hilbert scheme of A%. Duke
Math. J. 162 (2013), no. 2, 279-366. MR3018956 (document), 0, 0.1, 0.6, 1.2, 1.3, 1.4, 1.8, 3.2, 5.2

[SV17] O. Schiffmann, E. Vasserot, On cohomological Hall algebras of quivers : genmerators, preprint, 2017.
arXiv:1705.07488 2

[SVV17] P. Shan, M. Varagnolo, and E. Vasserot. On the center of quiver-Hecke algebras. Duke Math. J. 166, no. 6
(2017), 1005-1101. 0.4

[St63] R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56. MR0155937 6

[T99] B. Totaro, The Chow ring of a classifying space. Algebraic K-theory (Seattle, WA, 1997), 249-281, Proc.
Sympos. Pure Math., 67, Amer. Math. Soc., Providence, RI, 1999. MR 1743244 1, 2

[T93] R. Thomason, Les K-groupes d’un schéma éclaté et une formule d’intersection excédentaire, Invent. Math. 112
(1993), 195-215. MR1207482 4

[Va00] M. Varagnolo, Quiver varieties and Yangians, Lett. Math. Phys. 53 (2000), no. 4, 273-283. MR1818101 0, 0,
0.2,0.4,2,1,04,1, 5.6, 8, 83

[Voev02] V. Voevodsky, Open problems in the motivic stable homotopy theory. I, Motives, polylogarithms and Hodge
theory, Part I (Irvine, CA, 1998), Int. Press Lect. Ser., vol. 3, Int. Press, Somerville, MA, 2002, pp. 3-34.
MR1977582 6

[YZ16a] Y. Yang and G. Zhao, On two cohomological Hall algebras, preprint, (2016). arXiv:1604.01477 0.6


http://www.ams.org/mathscinet-getitem?mr=2851153
http://www.ams.org/mathscinet-getitem?mr=MR2970468
http://www.ams.org/mathscinet-getitem?mr=2286826
http://www.ams.org/mathscinet-getitem?mr=2597740
http://www.ams.org/mathscinet-getitem?mr=1088333
http://www.ams.org/mathscinet-getitem?mr=3316914
http://www.ams.org/mathscinet-getitem?mr=1302318
http://www.ams.org/mathscinet-getitem?mr=1604167
http://www.ams.org/mathscinet-getitem?mr=1808477
http://arxiv.org/abs/9912158
http://www.ams.org/mathscinet-getitem?mr=3077693
http://arxiv.org/abs/1508.06068
http://www.ams.org/mathscinet-getitem?mr=1062796
http://www.ams.org/mathscinet-getitem?mr=1012870
http://www.ams.org/mathscinet-getitem?mr=1632802
http://www.ams.org/mathscinet-getitem?mr=2944034
http://www.ams.org/mathscinet-getitem?mr=3018956
http://arxiv.org/abs/1705.07488
http://www.ams.org/mathscinet-getitem?mr=0155937
http://www.ams.org/mathscinet-getitem?mr=1743244
http://www.ams.org/mathscinet-getitem?mr=1207482
http://www.ams.org/mathscinet-getitem?mr=1818101
http://www.ams.org/mathscinet-getitem?mr=1977582
http://arxiv.org/abs/1604.01477

44 Y. YANG AND G. ZHAO

[YZ16b] Y. Yang and G. Zhao, Cohomological Hall algebras and affine quantum groups, Selecta Math., to appear.
arXiv:1604.01865 0.3, 0.5, 6.2, 6, 1

[YZ17] Y. Yang and G. Zhao, Quiver varieties and elliptic quantum groups, preprint, (2017). arXiv:1708.01418 0,
0.5

[27Z14] G. Zhao and C. Zhong, Geometric representations of the formal affine Hecke algebra, Adv. Math. 317 (2017),
50-90. arXiv:1406.1283 0.5, 1.1, 2.1

[2715] G. Zhao and C. Zhong, FElliptic affine Hecke algebra and its representations, Preprint, (2015).
arXiv:1507.01245 0.5

SCHOOL OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF MELBOURNE, 813 SWANSTON STREET, PARKVILLE
VIC 3010, AUSTRALIA

E-mail address: yaping.yanglQunimelb.edu.au

MAX-PLANCK-INSTITUT FUR MATHEMATIK, VIVATSGASSE 7, 53111 BONN, GERMANY
Current address: Institute of Science and Technology Austria, Am Campus, 1, Klosterneuburg 3400, Austria
E-mail address: gufang.zhao@ist.ac.at


http://arxiv.org/abs/1604.01865
http://arxiv.org/abs/1708.01418
http://arxiv.org/abs/1406.1283
http://arxiv.org/abs/1507.01245

	0. Introduction
	1. Algebraic oriented cohomology theory
	2. The formal cohomological Hall algebras
	3. The generalized shuffle algebras
	4. The preprojective cohomological Hall algebras
	5. Representations of the preprojective CoHA
	6. Examples related to Lusztig's conjecture
	7. Yangians and shuffle algebras
	8. Comparison with Yangian actions on quiver varieties
	Appendix A. A symmetric polynomial identity
	References

